Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
Search
Asei Sugiyama
October 08, 2024
Technology
2
210
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
MLSE LLM ドメイン適用 WG向けに最近の取り組みをご紹介した資料です
Asei Sugiyama
October 08, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
0
160
AI工学特論: MLOps・継続的評価
asei
11
2.6k
生成AIを用いるサービス開発の原則
asei
1
62
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
2
510
Eval-Centric AI: GenAI における継続的改善の実現
asei
2
170
AI の活用における課題と現状、今後の期待
asei
4
750
MLOps の現場から
asei
10
1.2k
LLMOps: Eval-Centric を前提としたMLOps
asei
8
1k
The Rise of LLMOps
asei
14
3.3k
Other Decks in Technology
See All in Technology
モダンな現場と従来型の組織——そこに生じる "不整合" を解消してこそチームがパフォーマンスを発揮できる / Team-oriented Organization Design 20250825
mtx2s
4
480
Preferred Networks (PFN) とLLM Post-Training チームの紹介 / 第4回 関東Kaggler会 スポンサーセッション
pfn
PRO
1
130
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
nasuvitz
6
380
自治体職員がガバクラの AWS 閉域ネットワークを理解するのにやって良かった個人検証環境
takeda_h
2
370
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
310
我々は雰囲気で仕事をしている / How can we do vibe coding as well
naospon
2
210
Android Studio の 新しいAI機能を試してみよう / Try out the new AI features in Android Studio
yanzm
0
240
[kickflow]20250319_少人数チームでのAutify活用
otouhujej
0
200
生成AI利用プログラミング:誰でもプログラムが書けると 世の中どうなる?/opencampus202508
okana2ki
0
190
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
240
Rethinking Incident Response: Context-Aware AI in Practice - Incident Buddy Edition -
rrreeeyyy
0
130
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
300
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Embracing the Ebb and Flow
colly
87
4.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
It's Worth the Effort
3n
187
28k
Being A Developer After 40
akosma
90
590k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Gamification - CAS2011
davidbonilla
81
5.4k
Transcript
©2021-2024 Citadel AI Inc. LLM ドメイン適⽤ WG 向け Citadel AI
の取り 組みのご紹介 株式会社 Citadel AI
CONFIDENTIAL ©2021-2024 Citadel AI Inc. TOC - Citadel AI のご紹介
- 対話ログの分析ワークフローのご紹介 - 今後の展望 - ご相談 2
Citadel AI のご紹介 #1 3
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 4 Trusted by Global Companies
Contributing to Trustworthy AI US AISIC (US) The AI Alliance (Meta/IBM) 安全安⼼な「信頼できるAI」を実現
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 5 ミスが許されない AI システムの品質検証 銀行・保険
など 医療・ヘルスケア 自動車・製造業
CONFIDENTIAL ©2021-2024 AI ライフサイクル全体の信頼性‧品質を向上 6 開発中の モデル データセット 1. モデル開発時の自動検証
自動 テスト モデル評価 レポート 2. モデル運用時の自動監視 運用中の モデル 自動 モニタリング 再学習
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 7 ⼤規模⾔語モデルの評価ツール Lens for
LLMs Human Eval Automated Eval Lens Fast ❌ ✅ ✅ Accurate ✅ ❌ ✅ ✅ ⼤量の網羅的な⾃動評価に ✅ 少量の⼈⼿評価を組み合わせ ✅ 両者の強みをインテグレート
対話ログの分析ワークフローの ご紹介 #2 8
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話の品質評価の 3 つの⽅法 - ベンチマークを⽤いた事前評価
: QA4AI ガイドライン - 仮想シナリオを⽤いた事前評価 : デジタル庁のレポート - 対話ログを⽤いた事後評価: 弊社での取り組み 9 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話ログの分析ワークフロー概要 10 全対話ログ サンプル (1000ユーザー)
RAGあり RAGなし 一般質問 100件 (目標) 要約 100件 (目標) 要約 100件 (目標) 翻訳 100件 (目標) 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 Step1. データの確認 Step2. 用途の確認 Step3. 人手での検証 Step4. 自動化の検討 … …
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 分析⽅法のデモ - Lens for LLMs
と Azure OpenAI の画⾯を⽤いてご紹介 1. 対話ログのカテゴリ抽出 2. 対話ログのカテゴリ分類‧評価 11
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 評価 - ⼈⼿で分類したアノテーション結果と、⽣成したプロンプトを⽤いた評価結 果を⽐較 -
カテゴリ抽出では⼈⼿で作成したカテゴリと類似するカテゴリを作成するこ とに成功した - カテゴリ分類では⼈⼿とほぼ変わらない精度で分類可能 - 「⼀般的な知識で回答できない質問かどうか」「健康問題に関する相談を含 んでいるか」「攻撃的なプロンプトを含んでいないか」もプロンプトにより 判定可能 12
今後の展望 #3 13
CONFIDENTIAL ©2021-2024 Citadel AI Inc. モデルの性能改善の3類型 14 モデル データ テスト
モデル データ テスト モデル データ テスト Kaggle型 モデルを改善 Data-Centric型 データを改善 API型 テストを改善 既存のノウハウが乏しい
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 問題意識 - 網羅的な評価観点を最初から取り揃 えることは無理 -
さまざまな⽤途に利⽤できるため、 ユースケースを列挙できない - 世論が変化することで新たな評価基 準があとから出現する 15 モデル データ テスト API型 テストを改善
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 継続的な評価 - 評価 → 指標の設計
→ 評価を反復 - すべての評価観点を最初から網羅す るのではなく、利⽤を通じて徐々に 評価観点を育てていく - 評価を⾏うことで、既存の評価観点 では抜け落ちるケースに気が付き、 新たな評価観点に気がつく 16 モデル データ テスト API型 テストを改善
19