Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
Search
Asei Sugiyama
October 08, 2024
Technology
2
38
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
MLSE LLM ドメイン適用 WG向けに最近の取り組みをご紹介した資料です
Asei Sugiyama
October 08, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
生成AIの活用パターンと継続的評価
asei
14
2k
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
50
MLOps の処方箋ができるまで
asei
3
490
LLM を現場で評価する
asei
5
910
生成 AI の評価方法
asei
8
2k
対話品質の評価に向き合う
asei
4
410
Kubeflow Pipelines v2 で変わる機械学習パイプライン開発
asei
6
1.3k
遊戯王 AI は次世代のグランドチャレンジになりうるか
asei
1
390
Vertex AI ではじめる MLOps
asei
3
190
Other Decks in Technology
See All in Technology
メールサーバ管理者のみ知る話
hinono
1
110
ライブラリでしかお目にかかれない珍しい実装
mikanichinose
2
340
強いチームと開発生産性
onk
PRO
28
8.8k
形式手法の 10 メートル手前 #kernelvm / Kernel VM Study Hokuriku Part 7
ytaka23
5
820
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
0
160
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
210
The Role of Developer Relations in AI Product Success.
giftojabu1
0
110
Engineering at LY Corporation
lycorp_recruit_jp
0
590
[FOSS4G 2024 Japan LT] LLMを使ってGISデータ解析を自動化したい!
nssv
1
190
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
28
7.5k
今、始める、第一歩。 / Your first step
yahonda
2
730
Microsoft MVPになる前、なってから/Fukuoka_Tech_Women_Community_1_baba
nina01
0
180
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.2k
Designing Experiences People Love
moore
138
23k
Unsuck your backbone
ammeep
668
57k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
27
2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
43
2.2k
Visualization
eitanlees
145
15k
Documentation Writing (for coders)
carmenintech
65
4.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Teambox: Starting and Learning
jrom
133
8.8k
Transcript
©2021-2024 Citadel AI Inc. LLM ドメイン適⽤ WG 向け Citadel AI
の取り 組みのご紹介 株式会社 Citadel AI
CONFIDENTIAL ©2021-2024 Citadel AI Inc. TOC - Citadel AI のご紹介
- 対話ログの分析ワークフローのご紹介 - 今後の展望 - ご相談 2
Citadel AI のご紹介 #1 3
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 4 Trusted by Global Companies
Contributing to Trustworthy AI US AISIC (US) The AI Alliance (Meta/IBM) 安全安⼼な「信頼できるAI」を実現
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 5 ミスが許されない AI システムの品質検証 銀行・保険
など 医療・ヘルスケア 自動車・製造業
CONFIDENTIAL ©2021-2024 AI ライフサイクル全体の信頼性‧品質を向上 6 開発中の モデル データセット 1. モデル開発時の自動検証
自動 テスト モデル評価 レポート 2. モデル運用時の自動監視 運用中の モデル 自動 モニタリング 再学習
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 7 ⼤規模⾔語モデルの評価ツール Lens for
LLMs Human Eval Automated Eval Lens Fast ❌ ✅ ✅ Accurate ✅ ❌ ✅ ✅ ⼤量の網羅的な⾃動評価に ✅ 少量の⼈⼿評価を組み合わせ ✅ 両者の強みをインテグレート
対話ログの分析ワークフローの ご紹介 #2 8
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話の品質評価の 3 つの⽅法 - ベンチマークを⽤いた事前評価
: QA4AI ガイドライン - 仮想シナリオを⽤いた事前評価 : デジタル庁のレポート - 対話ログを⽤いた事後評価: 弊社での取り組み 9 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話ログの分析ワークフロー概要 10 全対話ログ サンプル (1000ユーザー)
RAGあり RAGなし 一般質問 100件 (目標) 要約 100件 (目標) 要約 100件 (目標) 翻訳 100件 (目標) 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 Step1. データの確認 Step2. 用途の確認 Step3. 人手での検証 Step4. 自動化の検討 … …
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 分析⽅法のデモ - Lens for LLMs
と Azure OpenAI の画⾯を⽤いてご紹介 1. 対話ログのカテゴリ抽出 2. 対話ログのカテゴリ分類‧評価 11
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 評価 - ⼈⼿で分類したアノテーション結果と、⽣成したプロンプトを⽤いた評価結 果を⽐較 -
カテゴリ抽出では⼈⼿で作成したカテゴリと類似するカテゴリを作成するこ とに成功した - カテゴリ分類では⼈⼿とほぼ変わらない精度で分類可能 - 「⼀般的な知識で回答できない質問かどうか」「健康問題に関する相談を含 んでいるか」「攻撃的なプロンプトを含んでいないか」もプロンプトにより 判定可能 12
今後の展望 #3 13
CONFIDENTIAL ©2021-2024 Citadel AI Inc. モデルの性能改善の3類型 14 モデル データ テスト
モデル データ テスト モデル データ テスト Kaggle型 モデルを改善 Data-Centric型 データを改善 API型 テストを改善 既存のノウハウが乏しい
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 問題意識 - 網羅的な評価観点を最初から取り揃 えることは無理 -
さまざまな⽤途に利⽤できるため、 ユースケースを列挙できない - 世論が変化することで新たな評価基 準があとから出現する 15 モデル データ テスト API型 テストを改善
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 継続的な評価 - 評価 → 指標の設計
→ 評価を反復 - すべての評価観点を最初から網羅す るのではなく、利⽤を通じて徐々に 評価観点を育てていく - 評価を⾏うことで、既存の評価観点 では抜け落ちるケースに気が付き、 新たな評価観点に気がつく 16 モデル データ テスト API型 テストを改善
19