Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
Search
Asei Sugiyama
October 08, 2024
Technology
2
110
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
MLSE LLM ドメイン適用 WG向けに最近の取り組みをご紹介した資料です
Asei Sugiyama
October 08, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
MLOps の現場から
asei
8
870
LLMOps: Eval-Centric を前提としたMLOps
asei
7
630
The Rise of LLMOps
asei
13
2.9k
生成AIの活用パターンと継続的評価
asei
15
2.5k
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
81
MLOps の処方箋ができるまで
asei
3
630
LLM を現場で評価する
asei
5
990
生成 AI の評価方法
asei
8
2.4k
対話品質の評価に向き合う
asei
3
450
Other Decks in Technology
See All in Technology
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
150
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
Helm , Kustomize に代わる !? 次世代 k8s パッケージマネージャー Glasskube 入門 / glasskube-entry
parupappa2929
0
270
PHPで印刷所に入稿できる名札データを作る / Generating Print-Ready Name Tag Data with PHP
tomzoh
0
140
30分でわかる『アジャイルデータモデリング』
hanon52_
10
2.9k
N=1から解き明かすAWS ソリューションアーキテクトの魅力
kiiwami
0
140
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
890
深層学習と古典的画像アルゴリズムを組み合わせた類似画像検索内製化
shutotakahashi
1
260
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
830
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
360
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
150
NFV基盤のOpenStack更新 ~9世代バージョンアップへの挑戦~
vtj
0
230
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Code Reviewing Like a Champion
maltzj
521
39k
GitHub's CSS Performance
jonrohan
1030
460k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Building Your Own Lightsaber
phodgson
104
6.2k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Transcript
©2021-2024 Citadel AI Inc. LLM ドメイン適⽤ WG 向け Citadel AI
の取り 組みのご紹介 株式会社 Citadel AI
CONFIDENTIAL ©2021-2024 Citadel AI Inc. TOC - Citadel AI のご紹介
- 対話ログの分析ワークフローのご紹介 - 今後の展望 - ご相談 2
Citadel AI のご紹介 #1 3
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 4 Trusted by Global Companies
Contributing to Trustworthy AI US AISIC (US) The AI Alliance (Meta/IBM) 安全安⼼な「信頼できるAI」を実現
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 5 ミスが許されない AI システムの品質検証 銀行・保険
など 医療・ヘルスケア 自動車・製造業
CONFIDENTIAL ©2021-2024 AI ライフサイクル全体の信頼性‧品質を向上 6 開発中の モデル データセット 1. モデル開発時の自動検証
自動 テスト モデル評価 レポート 2. モデル運用時の自動監視 運用中の モデル 自動 モニタリング 再学習
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 7 ⼤規模⾔語モデルの評価ツール Lens for
LLMs Human Eval Automated Eval Lens Fast ❌ ✅ ✅ Accurate ✅ ❌ ✅ ✅ ⼤量の網羅的な⾃動評価に ✅ 少量の⼈⼿評価を組み合わせ ✅ 両者の強みをインテグレート
対話ログの分析ワークフローの ご紹介 #2 8
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話の品質評価の 3 つの⽅法 - ベンチマークを⽤いた事前評価
: QA4AI ガイドライン - 仮想シナリオを⽤いた事前評価 : デジタル庁のレポート - 対話ログを⽤いた事後評価: 弊社での取り組み 9 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話ログの分析ワークフロー概要 10 全対話ログ サンプル (1000ユーザー)
RAGあり RAGなし 一般質問 100件 (目標) 要約 100件 (目標) 要約 100件 (目標) 翻訳 100件 (目標) 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 Step1. データの確認 Step2. 用途の確認 Step3. 人手での検証 Step4. 自動化の検討 … …
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 分析⽅法のデモ - Lens for LLMs
と Azure OpenAI の画⾯を⽤いてご紹介 1. 対話ログのカテゴリ抽出 2. 対話ログのカテゴリ分類‧評価 11
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 評価 - ⼈⼿で分類したアノテーション結果と、⽣成したプロンプトを⽤いた評価結 果を⽐較 -
カテゴリ抽出では⼈⼿で作成したカテゴリと類似するカテゴリを作成するこ とに成功した - カテゴリ分類では⼈⼿とほぼ変わらない精度で分類可能 - 「⼀般的な知識で回答できない質問かどうか」「健康問題に関する相談を含 んでいるか」「攻撃的なプロンプトを含んでいないか」もプロンプトにより 判定可能 12
今後の展望 #3 13
CONFIDENTIAL ©2021-2024 Citadel AI Inc. モデルの性能改善の3類型 14 モデル データ テスト
モデル データ テスト モデル データ テスト Kaggle型 モデルを改善 Data-Centric型 データを改善 API型 テストを改善 既存のノウハウが乏しい
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 問題意識 - 網羅的な評価観点を最初から取り揃 えることは無理 -
さまざまな⽤途に利⽤できるため、 ユースケースを列挙できない - 世論が変化することで新たな評価基 準があとから出現する 15 モデル データ テスト API型 テストを改善
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 継続的な評価 - 評価 → 指標の設計
→ 評価を反復 - すべての評価観点を最初から網羅す るのではなく、利⽤を通じて徐々に 評価観点を育てていく - 評価を⾏うことで、既存の評価観点 では抜け落ちるケースに気が付き、 新たな評価観点に気がつく 16 モデル データ テスト API型 テストを改善
19