Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Let your data SPEAK!
Search
btel
September 03, 2012
Programming
1
2.6k
Let your data SPEAK!
Beginning data visualization in Python
btel
September 03, 2012
Tweet
Share
Other Decks in Programming
See All in Programming
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
690
CSC307 Lecture 03
javiergs
PRO
1
490
CSC307 Lecture 06
javiergs
PRO
0
680
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
630
ThorVG Viewer In VS Code
nors
0
760
Basic Architectures
denyspoltorak
0
660
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
AI巻き込み型コードレビューのススメ
nealle
0
120
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
Featured
See All Featured
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
The Cult of Friendly URLs
andyhume
79
6.8k
KATA
mclloyd
PRO
34
15k
エンジニアに許された特別な時間の終わり
watany
106
230k
Automating Front-end Workflow
addyosmani
1371
200k
Designing for Timeless Needs
cassininazir
0
130
Building a Scalable Design System with Sketch
lauravandoore
463
34k
For a Future-Friendly Web
brad_frost
182
10k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Typedesign – Prime Four
hannesfritz
42
2.9k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
79
Transcript
Let your data SPEAK! Introduction to data visualization Bartosz Telenczuk
Kiel, 2012 Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
position length angle area saturation brightness volume shape hue Grouping
containment connection similarity proximity Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Visualization design principles Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Tools Monday, 3 September 2012
GET DATA PARSE IT PROCESS VISUALIZE PUBLISH urllib2 csv, beautifulsoup
numpy, scipy matplotlib, chaco, mayavi2 LaTeX, cherrypy Monday, 3 September 2012
John Hunter 1968-2012 Monday, 3 September 2012
Monday, 3 September 2012
plot scatter bar polar contour imshow Monday, 3 September 2012
import numpy as np import matplotlib.pyplot as plt t =
np.linspace(0, 2*np.pi, 100) #generate data y = np.sin(t) plt.plot(t, y) plt.xlabel('angle') #add axis labels plt.ylabel('amplitude') plt.xlim([0, 2*np.pi]) #set data limits plt.xticks([0, np.pi, 2*np.pi], #add tick labels ['0', r'$\pi$', r'2$\pi$']) plt.show() #show plot Monday, 3 September 2012
Monday, 3 September 2012
import matplotlib.pyplot as plt import matplotlib.patches as mpatches fig =
plt.figure(figsize=(5,5)) # create figure container ax = plt.axes([0,0,1,1], frameon=False) # create axes container art = mpatches.Circle((0.5, 0.5), 0.5, ec="none") # create an artist ax.add_patch(art) # add the artist to the # container ax.set_xticks([]) # remove axes ticks ax.set_yticks([]) plt.show() Monday, 3 September 2012
Monday, 3 September 2012
display transform data transform axes transform figure transform Monday, 3
September 2012
import numpy as np import matplotlib.pyplot as plt from matplotlib
import patches from matplotlib import transforms fig = plt.figure() ax = fig.add_subplot(111) x = 10*np.random.randn(1000) ax.hist(x, 30) trans = transforms.blended_transform_factory( ax.transData, ax.transAxes) rect = patches.Rectangle((8,0), width=10, height=1, transform=trans, color='gray', alpha=0.5) ax.add_patch(rect) plt.show() Monday, 3 September 2012
Interactivity Monday, 3 September 2012
import numpy from matplotlib.pyplot import figure, show def onpick(event): #
define a handler i = event.ind # indices of clicked points ax.plot(xs[i], ys[i], 'ro') # plot the points in red fig.canvas.draw() # update axes xs, ys = numpy.random.rand(2,100) fig = figure() ax = fig.add_subplot(111) line, = ax.plot(xs, ys, 'o', picker=5) # 5 points tolerance fig.canvas.mpl_connect('pick_event', onpick) # connect handler to event show() # enter the main loop Monday, 3 September 2012
Monday, 3 September 2012
points3d( ) contour3d( ) quiver3d( ) plot3d( ) Monday, 3
September 2012
from enthought.mayavi import mlab import numpy as np x, y
= np.ogrid[-10:10:100j, -10:10:100j] r = np.sqrt(x**2 + y**2) z = np.sin(r)/r mlab.surf(x,y, 10*z) mlab.outline() mlab.colorbar() Monday, 3 September 2012
Monday, 3 September 2012