Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Let your data SPEAK!
Search
btel
September 03, 2012
Programming
1
2.6k
Let your data SPEAK!
Beginning data visualization in Python
btel
September 03, 2012
Tweet
Share
Other Decks in Programming
See All in Programming
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
18
7.5k
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
350
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
190
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
2
220
AIコーディングエージェント(skywork)
kondai24
0
180
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
ハイパーメディア駆動アプリケーションとIslandアーキテクチャ: htmxによるWebアプリケーション開発と動的UIの局所的適用
nowaki28
0
430
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
120
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.3k
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
140
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
satoaoaka
0
260
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Rails Girls Zürich Keynote
gr2m
95
14k
A Tale of Four Properties
chriscoyier
162
23k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Become a Pro
speakerdeck
PRO
31
5.7k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Visualization
eitanlees
150
16k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
KATA
mclloyd
PRO
33
15k
Transcript
Let your data SPEAK! Introduction to data visualization Bartosz Telenczuk
Kiel, 2012 Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
position length angle area saturation brightness volume shape hue Grouping
containment connection similarity proximity Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Visualization design principles Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Tools Monday, 3 September 2012
GET DATA PARSE IT PROCESS VISUALIZE PUBLISH urllib2 csv, beautifulsoup
numpy, scipy matplotlib, chaco, mayavi2 LaTeX, cherrypy Monday, 3 September 2012
John Hunter 1968-2012 Monday, 3 September 2012
Monday, 3 September 2012
plot scatter bar polar contour imshow Monday, 3 September 2012
import numpy as np import matplotlib.pyplot as plt t =
np.linspace(0, 2*np.pi, 100) #generate data y = np.sin(t) plt.plot(t, y) plt.xlabel('angle') #add axis labels plt.ylabel('amplitude') plt.xlim([0, 2*np.pi]) #set data limits plt.xticks([0, np.pi, 2*np.pi], #add tick labels ['0', r'$\pi$', r'2$\pi$']) plt.show() #show plot Monday, 3 September 2012
Monday, 3 September 2012
import matplotlib.pyplot as plt import matplotlib.patches as mpatches fig =
plt.figure(figsize=(5,5)) # create figure container ax = plt.axes([0,0,1,1], frameon=False) # create axes container art = mpatches.Circle((0.5, 0.5), 0.5, ec="none") # create an artist ax.add_patch(art) # add the artist to the # container ax.set_xticks([]) # remove axes ticks ax.set_yticks([]) plt.show() Monday, 3 September 2012
Monday, 3 September 2012
display transform data transform axes transform figure transform Monday, 3
September 2012
import numpy as np import matplotlib.pyplot as plt from matplotlib
import patches from matplotlib import transforms fig = plt.figure() ax = fig.add_subplot(111) x = 10*np.random.randn(1000) ax.hist(x, 30) trans = transforms.blended_transform_factory( ax.transData, ax.transAxes) rect = patches.Rectangle((8,0), width=10, height=1, transform=trans, color='gray', alpha=0.5) ax.add_patch(rect) plt.show() Monday, 3 September 2012
Interactivity Monday, 3 September 2012
import numpy from matplotlib.pyplot import figure, show def onpick(event): #
define a handler i = event.ind # indices of clicked points ax.plot(xs[i], ys[i], 'ro') # plot the points in red fig.canvas.draw() # update axes xs, ys = numpy.random.rand(2,100) fig = figure() ax = fig.add_subplot(111) line, = ax.plot(xs, ys, 'o', picker=5) # 5 points tolerance fig.canvas.mpl_connect('pick_event', onpick) # connect handler to event show() # enter the main loop Monday, 3 September 2012
Monday, 3 September 2012
points3d( ) contour3d( ) quiver3d( ) plot3d( ) Monday, 3
September 2012
from enthought.mayavi import mlab import numpy as np x, y
= np.ogrid[-10:10:100j, -10:10:100j] r = np.sqrt(x**2 + y**2) z = np.sin(r)/r mlab.surf(x,y, 10*z) mlab.outline() mlab.colorbar() Monday, 3 September 2012
Monday, 3 September 2012