Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Let your data SPEAK!
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
btel
September 03, 2012
Programming
1
2.6k
Let your data SPEAK!
Beginning data visualization in Python
btel
September 03, 2012
Tweet
Share
Other Decks in Programming
See All in Programming
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
490
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.6k
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
580
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2.2k
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
180
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.6k
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
680
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.5k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
120
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
170
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
0
250
SQL Server 2025 LT
odashinsuke
0
190
Featured
See All Featured
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
41
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Designing for humans not robots
tammielis
254
26k
The browser strikes back
jonoalderson
0
330
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
340
Navigating Team Friction
lara
192
16k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
84
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
55
49k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Transcript
Let your data SPEAK! Introduction to data visualization Bartosz Telenczuk
Kiel, 2012 Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
position length angle area saturation brightness volume shape hue Grouping
containment connection similarity proximity Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Visualization design principles Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Monday, 3 September 2012
Tools Monday, 3 September 2012
GET DATA PARSE IT PROCESS VISUALIZE PUBLISH urllib2 csv, beautifulsoup
numpy, scipy matplotlib, chaco, mayavi2 LaTeX, cherrypy Monday, 3 September 2012
John Hunter 1968-2012 Monday, 3 September 2012
Monday, 3 September 2012
plot scatter bar polar contour imshow Monday, 3 September 2012
import numpy as np import matplotlib.pyplot as plt t =
np.linspace(0, 2*np.pi, 100) #generate data y = np.sin(t) plt.plot(t, y) plt.xlabel('angle') #add axis labels plt.ylabel('amplitude') plt.xlim([0, 2*np.pi]) #set data limits plt.xticks([0, np.pi, 2*np.pi], #add tick labels ['0', r'$\pi$', r'2$\pi$']) plt.show() #show plot Monday, 3 September 2012
Monday, 3 September 2012
import matplotlib.pyplot as plt import matplotlib.patches as mpatches fig =
plt.figure(figsize=(5,5)) # create figure container ax = plt.axes([0,0,1,1], frameon=False) # create axes container art = mpatches.Circle((0.5, 0.5), 0.5, ec="none") # create an artist ax.add_patch(art) # add the artist to the # container ax.set_xticks([]) # remove axes ticks ax.set_yticks([]) plt.show() Monday, 3 September 2012
Monday, 3 September 2012
display transform data transform axes transform figure transform Monday, 3
September 2012
import numpy as np import matplotlib.pyplot as plt from matplotlib
import patches from matplotlib import transforms fig = plt.figure() ax = fig.add_subplot(111) x = 10*np.random.randn(1000) ax.hist(x, 30) trans = transforms.blended_transform_factory( ax.transData, ax.transAxes) rect = patches.Rectangle((8,0), width=10, height=1, transform=trans, color='gray', alpha=0.5) ax.add_patch(rect) plt.show() Monday, 3 September 2012
Interactivity Monday, 3 September 2012
import numpy from matplotlib.pyplot import figure, show def onpick(event): #
define a handler i = event.ind # indices of clicked points ax.plot(xs[i], ys[i], 'ro') # plot the points in red fig.canvas.draw() # update axes xs, ys = numpy.random.rand(2,100) fig = figure() ax = fig.add_subplot(111) line, = ax.plot(xs, ys, 'o', picker=5) # 5 points tolerance fig.canvas.mpl_connect('pick_event', onpick) # connect handler to event show() # enter the main loop Monday, 3 September 2012
Monday, 3 September 2012
points3d( ) contour3d( ) quiver3d( ) plot3d( ) Monday, 3
September 2012
from enthought.mayavi import mlab import numpy as np x, y
= np.ogrid[-10:10:100j, -10:10:100j] r = np.sqrt(x**2 + y**2) z = np.sin(r)/r mlab.surf(x,y, 10*z) mlab.outline() mlab.colorbar() Monday, 3 September 2012
Monday, 3 September 2012