Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのか
Search
cakkby
April 26, 2022
Science
0
1.5k
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのか
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのかについて解説してみました
cakkby
April 26, 2022
Tweet
Share
Other Decks in Science
See All in Science
データマイニング - ノードの中心性
trycycle
PRO
0
330
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
340
Celebrate UTIG: Staff and Student Awards 2025
utig
0
790
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
260
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
250
凸最適化からDC最適化まで
santana_hammer
1
350
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
190
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
150
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Practical Orchestrator
shlominoach
191
11k
GraphQLとの向き合い方2022年版
quramy
50
14k
RailsConf 2023
tenderlove
30
1.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Design in an AI World
tapps
0
150
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
How to Think Like a Performance Engineer
csswizardry
28
2.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
None
• • • •
None
None
None
𝑖 𝑙𝑖 𝑒𝑖 𝑁 𝑖 𝑁𝑖 𝑁𝑖 𝑁 = 𝑙𝑖
𝑒𝑖 σ 𝑗 𝑙𝑗 𝑒𝑗 𝑒𝑖 = 1 𝑒𝑖 𝑞𝑖 = 𝑙𝑖 𝑒𝑖 𝑞𝑖
𝑛 𝑔 = σ𝑗 𝑞𝑗 𝑖 𝑞𝑖 𝑁 𝑝 =
𝑞𝑖 /𝑔 𝑖 Pr 𝑁 = 𝑘 = 𝐵𝑖𝑛𝑜𝑚 𝑘|𝑛, 𝑝 = 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘
𝑛 𝑔 𝜆 = 𝑛𝑝 = 𝑛𝑞𝑖 𝑔 𝑛, 𝑔
lim 𝜆=𝑛𝑝: fix 𝑛,𝑔→∞ 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝜆𝑘𝑒−𝜆 𝑘! = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑘|𝜆 𝜆 = 𝑛𝑝 𝑖 𝜆 𝜆 = 1 𝜆 = 2 𝜆 = 3
𝜆 𝜆 𝜆1 𝜆2
𝜆 𝑖 𝑗 𝜆𝑖𝑗 𝜑 𝜃 𝜃 𝑃 𝑥|𝜃 𝜃
𝑃 𝑥 = 1 𝑀 𝑗=1 𝑀 𝑃 𝑥|𝜃𝑗 ≃ න𝜑 𝜃 𝑃 𝑥|𝜃 𝑑𝜃
𝐺𝑎𝑚𝑚𝑎 𝜆|𝜇, 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙,
𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥 = 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚 𝑥|𝜇, 𝜙 𝜇, 𝜙 𝑉 𝑥 = 𝜇 + 𝜇2 𝜙 > 𝜇 𝜙 = ∞
None
𝜙 𝜎2 = 𝜇 𝜎2 = 𝜇 + 𝜇2 𝜙
𝑒𝑖 𝑞𝑖 𝑥𝑖 ′ = 𝑥𝑖 𝑙𝑖 𝐸 𝑥′ =
𝐸 𝑥 𝑙𝑖 = 𝜇 𝑙𝑖 = 𝜇, 𝑉 𝑥′ = 𝑉 𝑥 𝑙𝑖 2 = 𝜇 𝑙𝑖 2 + 𝜇2 𝑙𝑖 2𝜙 = 𝜇 𝑙𝑖 + 𝜇2 𝜙 ≠ 𝜇 + 𝜇2 𝜙
log2 𝑦 = 𝑋𝑓𝑢𝑙𝑙 𝛽 log2 𝑦 = 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝛽
𝑃 𝑌|𝑋𝑓𝑢𝑙𝑙 𝑃 𝑌|𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑
None
𝑃 𝑘 = 𝑛 𝑛 − 1 ⋯ 𝑛 −
𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛−𝑘 𝜆 = 𝑛𝑝 𝑛 → ∞ 𝑝 → 0 𝑃 𝑘 ≈ 𝑛𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛 = 𝜆𝑘 𝑘! 1 − 𝜆 𝑛 𝑛 𝑒 1 − 𝜆 𝑛 𝑛 → 𝑒−𝜆 𝑃 𝑘 ≈ 𝜆𝑘 𝑘! 𝑒−𝜆
න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙, 𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆
= න 0 ∞ 𝜆𝜙−1𝑒− 𝜆𝜇 𝜙 𝜙 𝜇 𝜙 Γ 𝜙 𝜆𝑥 𝑥! 𝑒−𝜆𝑑𝜆 = 𝜇 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 න 0 ∞ 𝜆𝜙+𝑥−1𝑒−𝜆 𝜇+𝜙 𝜙 𝑑𝜆 = 𝜙 𝜇 + 𝜙 −𝜙 𝜇 𝜇 + 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙+𝑥 Γ 𝜙 + 𝑥 = Γ 𝜙 + 𝑥 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝑥 𝜇 𝜇 + 𝜙 𝜙 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥
• • • • • •