Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのか
Search
cakkby
April 26, 2022
Science
0
1.1k
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのか
なぜ人はRNA-Seqのリードカウントを負の二項分布に従うと考えるのかについて解説してみました
cakkby
April 26, 2022
Tweet
Share
Other Decks in Science
See All in Science
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
120
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.3k
WCS-LA-2024
lcolladotor
0
120
ベイズ最適化をゼロから
brainpadpr
2
820
拡散モデルの原理紹介
brainpadpr
3
4.9k
最適化超入門
tkm2261
14
3.3k
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
230
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
940
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
Pericarditis Comic
camkdraws
0
1.2k
Featured
See All Featured
BBQ
matthewcrist
85
9.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Docker and Python
trallard
40
3.1k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
A Modern Web Designer's Workflow
chriscoyier
693
190k
4 Signs Your Business is Dying
shpigford
180
21k
Side Projects
sachag
452
42k
Six Lessons from altMBA
skipperchong
27
3.5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Transcript
None
• • • •
None
None
None
𝑖 𝑙𝑖 𝑒𝑖 𝑁 𝑖 𝑁𝑖 𝑁𝑖 𝑁 = 𝑙𝑖
𝑒𝑖 σ 𝑗 𝑙𝑗 𝑒𝑗 𝑒𝑖 = 1 𝑒𝑖 𝑞𝑖 = 𝑙𝑖 𝑒𝑖 𝑞𝑖
𝑛 𝑔 = σ𝑗 𝑞𝑗 𝑖 𝑞𝑖 𝑁 𝑝 =
𝑞𝑖 /𝑔 𝑖 Pr 𝑁 = 𝑘 = 𝐵𝑖𝑛𝑜𝑚 𝑘|𝑛, 𝑝 = 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘
𝑛 𝑔 𝜆 = 𝑛𝑝 = 𝑛𝑞𝑖 𝑔 𝑛, 𝑔
lim 𝜆=𝑛𝑝: fix 𝑛,𝑔→∞ 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝜆𝑘𝑒−𝜆 𝑘! = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑘|𝜆 𝜆 = 𝑛𝑝 𝑖 𝜆 𝜆 = 1 𝜆 = 2 𝜆 = 3
𝜆 𝜆 𝜆1 𝜆2
𝜆 𝑖 𝑗 𝜆𝑖𝑗 𝜑 𝜃 𝜃 𝑃 𝑥|𝜃 𝜃
𝑃 𝑥 = 1 𝑀 𝑗=1 𝑀 𝑃 𝑥|𝜃𝑗 ≃ න𝜑 𝜃 𝑃 𝑥|𝜃 𝑑𝜃
𝐺𝑎𝑚𝑚𝑎 𝜆|𝜇, 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙,
𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥 = 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚 𝑥|𝜇, 𝜙 𝜇, 𝜙 𝑉 𝑥 = 𝜇 + 𝜇2 𝜙 > 𝜇 𝜙 = ∞
None
𝜙 𝜎2 = 𝜇 𝜎2 = 𝜇 + 𝜇2 𝜙
𝑒𝑖 𝑞𝑖 𝑥𝑖 ′ = 𝑥𝑖 𝑙𝑖 𝐸 𝑥′ =
𝐸 𝑥 𝑙𝑖 = 𝜇 𝑙𝑖 = 𝜇, 𝑉 𝑥′ = 𝑉 𝑥 𝑙𝑖 2 = 𝜇 𝑙𝑖 2 + 𝜇2 𝑙𝑖 2𝜙 = 𝜇 𝑙𝑖 + 𝜇2 𝜙 ≠ 𝜇 + 𝜇2 𝜙
log2 𝑦 = 𝑋𝑓𝑢𝑙𝑙 𝛽 log2 𝑦 = 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝛽
𝑃 𝑌|𝑋𝑓𝑢𝑙𝑙 𝑃 𝑌|𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑
None
𝑃 𝑘 = 𝑛 𝑛 − 1 ⋯ 𝑛 −
𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛−𝑘 𝜆 = 𝑛𝑝 𝑛 → ∞ 𝑝 → 0 𝑃 𝑘 ≈ 𝑛𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛 = 𝜆𝑘 𝑘! 1 − 𝜆 𝑛 𝑛 𝑒 1 − 𝜆 𝑛 𝑛 → 𝑒−𝜆 𝑃 𝑘 ≈ 𝜆𝑘 𝑘! 𝑒−𝜆
න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙, 𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆
= න 0 ∞ 𝜆𝜙−1𝑒− 𝜆𝜇 𝜙 𝜙 𝜇 𝜙 Γ 𝜙 𝜆𝑥 𝑥! 𝑒−𝜆𝑑𝜆 = 𝜇 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 න 0 ∞ 𝜆𝜙+𝑥−1𝑒−𝜆 𝜇+𝜙 𝜙 𝑑𝜆 = 𝜙 𝜇 + 𝜙 −𝜙 𝜇 𝜇 + 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙+𝑥 Γ 𝜙 + 𝑥 = Γ 𝜙 + 𝑥 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝑥 𝜇 𝜇 + 𝜙 𝜙 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥
• • • • • •