Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Montreal R Users Data Dive - Bike accidents
Search
Corey Chivers
April 03, 2013
0
120
Montreal R Users Data Dive - Bike accidents
Corey Chivers
April 03, 2013
Tweet
Share
More Decks by Corey Chivers
See All by Corey Chivers
Germination Project Data Science at Penn Medicine
cjbayesian
1
300
From Predictions to Decisions
cjbayesian
1
580
NIPS 2017 Summary
cjbayesian
1
1.6k
Validation des prévisions écologiques utilisant VMAPP: Validation métrique appliquée à des prévisions probabilistes
cjbayesian
1
140
From Whale Calls to Dark Matter - Competetive Data Science with R and Python
cjbayesian
0
1.4k
Introduction to Likelihood-based methods
cjbayesian
1
770
Implications of uncertainty: Bayesian modelling of aquatic invasive species spread
cjbayesian
0
350
Future Avenues for Open Data
cjbayesian
0
220
Introduction to Simulation using R
cjbayesian
2
8.2k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Code Reviewing Like a Champion
maltzj
524
40k
The Cult of Friendly URLs
andyhume
79
6.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
GitHub's CSS Performance
jonrohan
1031
460k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Transcript
Welcome to the Data Dive! Sponsored By:
Cycling Collisions • All accidents in Montreal reported 2006-2010 •
Obtained and compiled by Roberta Rocha at the Gazette https://github.com/cjbayesian/collisions
• Can we predict accident rates? • Spatial patterns? Dangerous
areas? • Does the construction holiday have an effect on accident rates? Some potential questions
Getting Started library(lubridate) library(maptools) library(Hmisc) d<-read.csv('data/Bike Accidents.csv',sep='|') mtl<-readShapePoly('data/montreal_borough_borders.shp') par(bg='black') plot(mtl,col='grey')
points(d$long,d$lat,col='red',pch=20,cex=0.5) https://github.com/cjbayesian/collisions http://youtu.be/hJE2_XMdfTk
• Can we predict accident rates? • Spatial patterns? Dangerous
areas? • Does the construction holiday have an effect on accident rates? Some potential questions