Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【キュービック】データ利活用を見据えた分析基盤リニューアルの進め方
Search
CUEBiC Inc.
April 27, 2023
0
710
【キュービック】データ利活用を見据えた分析基盤リニューアルの進め方
CUEBiC Inc.
April 27, 2023
Tweet
Share
More Decks by CUEBiC Inc.
See All by CUEBiC Inc.
Terraform Registryで公開されているTerraform Modulesが便利だった件
cuebic9bic
2
1.3k
CUEBiC 会社説明資料 デザイナー向け
cuebic9bic
0
3.3k
trocco第5回ユーザー会_troccoとAmazon Redshiftで挑んだコンテンツマーケティングの分析基盤構築
cuebic9bic
0
660
CUEBiC社のデジタルメディア事業を支えるデータ分析基盤の変遷
cuebic9bic
0
680
CUEBiC Presentation デザイナー採用イベント用
cuebic9bic
0
84
株式会社キュービック 中途採用向け 会社説明資料2024
cuebic9bic
0
6.6k
Dev Sumi 2023
cuebic9bic
0
2.1k
キュービック独自のキャリア開発サイクルによるエンジニア組織開発.pdf
cuebic9bic
0
630
キュービックのエンジニアリング
cuebic9bic
0
17k
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Making Projects Easy
brettharned
116
6k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
How to Ace a Technical Interview
jacobian
276
23k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Bash Introduction
62gerente
610
210k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Optimizing for Happiness
mojombo
376
70k
Documentation Writing (for coders)
carmenintech
67
4.5k
BBQ
matthewcrist
85
9.4k
Transcript
限られた予算・時間の中でいかにプロジェクトを成功させたのか データ利活用を見据えた 分析基盤リニューアルの進め方 株式会社キュービック テクノロジーエキスパートセンター Tech Lead 尾﨑勇太 2023.4.27 開示範囲:公開ドキュメント
1
株式会社キュービックとは? 2 株式会社キュービック /CUEBiC Inc. 社名 事業 設立 資本金 拠点
2006 年 10 月 24 日 31,000,000円 人員 約 300 名(単体)※インターンを含む 約 484 名(連結) ※2022年3月現在 デジタルメディア事業、集客支援事業 ほか 東京、福岡
自己紹介 3 株式会社キュービック Tech Lead/データエンジニア 尾﨑 勇太(おざき ゆうた) 覚え方:尾崎豊(おざきゆたか)と一字違い 1990年和歌山県白浜町生まれ
生息地:千葉県松戸市 スキルセット 1. マネジメント/品質管理/データ分析 2. マイナスからゼロ、ゼロイチ 3. サーバーサイド(WEB/アプリ開発) @waichang111 経歴の詳細はこちらをご参照ください 和歌山県民の取扱説明書はこちらをご参照ください 最近解放しました はてなブログもやってます
セッション内容 4 1.データ分析基盤の概要と課題 2.Amazon Redshiftとtrocco®導入の経緯 3.導入後の変化・効果 4.今後の展望
データ分析基盤の概要と課題 5
導入時の課題/データウェアハウス構築の目的 6 ビジネスインパクト ・メディアの売上予測値に誤差が発生:10〜20%程度 ・集計パフォーマンスの劣化:集計時間が2時間以上 ・機能改善の費用対効果が低減:半年〜1年(EX コンバージョンアップロード) エンジニアリング課題 ・技術負債/メインメンバーの離脱:不具合以外は仕様凍結 課題:事業成長に分析基盤が耐えられなくなってきた
データウェアハウス構築の目的 事業成長に耐えうるデータ基盤の構築 ・組織の売上目標のモニタリング精度向上 ・財務/管理会計データの統合管理ができる ・データを起点とした定量的な意思決定ができる
既存のデータ分析環境 7 広告/ASP 生データ 加工データ 集計データ 設定マスタ その他マスタ クライアント別売上データ 組織別売上データ
メディア別売上データ 媒体別広告費データ 組織別広告費/成果データ 広告データ 成果データ CUEBiC Analytics
既存のデータ分析環境でのそれぞれの役割 8 CUEBiC Analytics ・設定情報の入力 ・広告レポートのインポート ・成果レポートのインポート ・広告レポートの集計 ・成果レポートの集計 CUEBiC
Analytics ・設定情報の入力 ・広告データのインポート ・成果データのインポート ・広告データの集計 ・成果データの集計 ・データの保持 - 集計設定データ - 広告/成果の生データ - 広告/成果の集計データ ・データの加工 - 広告データ - データの加工 ・データのビジュアライゼー ション
リニューアル後のデータ分析環境 9 生データ 加工データ 集計データ 設定マスタ その他マスタ クライアント別売上データ 組織別売上データ メディア別売上データ
媒体別広告費データ 組織別広告費/成果データ ユーザーインターフェース(Oasis) 広告集計設定 成果集計設定 転送設定 データマート trocco API 広告/ASP
リニューアル後のデータ分析環境でのそれぞれの役割 10 CUEBiC Analytics ・データ抽出 - 広告データ - 成果データ ・データ転送
・データ整形 ・データの蓄積 ・データの加工 ・データの集計 ・データのビジュアライゼー ション ・集計設定 ユーザーインターフェース(Oasis) ・ビジネスサイド側が見るビ ジュアライゼーション
Amazon Redshiftとtrocco®導入の経緯 11
データウェアハウスを構築する目的 12 SaaS>分析基盤>DWH>Tableauのデータ連携フロー確立 • 複数SaaSに散らばったデータを統合管理する • 管理/財務会計データをDWHに継続的にデータの蓄積を行う • BIツールにて各部門がファクトの確認、戦略戦術策定を行う ユースケースと期待される効果
• 企業課題の可視化/早期課題解決 • ビジネスサイドの定量データ把握/戦略実行(KPI/KGI/売上予測) • バックオフィス業務の合理化/効率化/ミスの低減 ※管理会計:自社の経営に活かすために作成する、社内向けの会計 ※財務会計:企業外部の利害関係者に対して、企業の財務状況を報告するために行う会計
データ分析リニューアルの背景 13 1.DX戦略の一環としてDWH化が計画されていた 2.CBAはメディアの収益を集計していたが、老朽化が進んでいた 3.そこでCBAの刷新とDWHのR&Dを並行で行うことに 13 尾﨑く〜ん なんとかできない? えっ?! CBA?ETL?DWH?
※CBA:CUEBiC Analytics と思われたが、メイン推進担当が急遽離脱!!
CUEBiC Analyticsを分解 14 14 広告/成果インポート 広告/成果集計 集計設定 データ収集を外部SaaS化 代替できそう! 集計ロジックはローコード化
CUEBiC Analytics 成果エクスポート BIツール側でローコード化 爆速キャッチアップ
RDSからデータウェアハウスへの移行を検討 15 15 データ整形/蓄積 データ活用 データ収集 ETL DWH BI
R&Dでデータ連携フローを検証 16 16 広告媒体と親和性のあったtroccoをフロントに設定 データフロー/サービスは検証を行いつつ確定
データウェアハウス導入前後比較 17 CUEBiC Analytics Oasis データ抽出 集計設定 集計ロジック データ蓄積 データ分析
手動
導入後の変化・効果 18
導入後の解決状況 19 ビジネスインパクト ・メディアの売上予測値に誤差が発生:10〜20%程度 ・集計パフォーマンスの劣化:集計時間が2時間以上 ・機能改善の費用対効果が低減:半年〜1年 エンジニアリング課題 ・技術負債/メインメンバーの離脱:不具合以外は仕様凍結 課題:事業成長に分析基盤が耐えられなくなってきた データウェアハウス構築の目的
事業成長に耐えうるデータ基盤の構築 ・モニタリング数値の精度向上 ・財務/管理会計データの統合管理ができる ・データを起点とした定量的な意思決定ができる 事業成長に耐えうるデータ基盤の構築 ・組織の売上目標のモニタリング精度向上 ・財務/管理会計データの統合管理ができる ・データを起点とした定量的な意思決定ができる ▲部分的に改善 ▲管理会計はスコープ外 ▲基盤構築のみ ⭕5〜10%に改善見込み ⭕集計時間が1時間以内に ⭕1〜2ヶ月に ⭕並行して取り込みが可能に
導入後の変化 20 DWHのポテンシャルを認識し、機械学習のR&Dにも前向きに 業務内の課題が顕在化(分析フローの自動化依頼など) エンジニア/DX推進 先端技術検証の社内整備/仮説検証を開始 ローコードを武器にBPRを推進(顕在化していないマスタの統制など) 経営層/事業部
導入後の効果試算 21 運用ミスによる集計誤差を自動化により40%低減 単価情報の精度向上により20%〜30%向上 コミュニケーション負荷20%〜30%軽減 8人月→4人月 Rubyエンジニア工数の64%をノーコード/SQLで代替 DXエンジニアの工数の37.5%を自動化により削減 エンジニアリング工数 集計誤差
リニューアル前後の利用技術 データ設定 データ整形/集計 アウトプット データ収集 Rubyエンジニア工数の64%をノーコード/SQLで代替 前 後 運用保守/技術負債返済 運用保守/機能追加
CBA リニューアル前後の業務フロー データ設定 エクスポート 分析 インポート DXエンジニアの工数の37.5%を自動化により削減 前 後
CBA CBA Oasis
今後の展望 24
今後の課題 25 現状 CUEBic Analyticsのデータ収集/集計対象のメインはメディアの広告と成果データ であり、その範囲内でデータウェアハウスへのリニューアルを実施中 あるべき姿 サイトの動向や売上といったモノの分析ではなく、 カスタマーを分析し最適なユーザ体験を提供できる状態 問題(現状とあるべき姿のGAP)
ユーザーの一次情報などは蓄積/分析できていない 課題(問題の解決策) 中長期計画としてCubic Analyticsではリーチできていない 情報収集+機械学習などの分析基盤構築を推進する 問題が解消されることで あるべき姿に近づく
今後は本格的なデータ利活用フェーズへ 26 広告/ASP 成果集計 集計結果 モニタリング ユーザー行動 一次情報 推論結果 施策統計
広告/ASP
27 ご清聴、ありがとうございました
対談 28
29 R&Dから導入までの予算承認 検証のゲートウェイが3ヶ月起き・・・ 経営へのレポート提出回数はトータルで5回・・・・ 💡リプレイスの過程で一番苦労したこと 4月 R&D ①trocco導入計画 ②troccoトライヤル導入 ③リアーキテクト1回目
④リアーキテクト2回目 ⑤運用リプレイス計画 ⑥運用リプレイス始動 イベント 7月 10月 導入/開発 1月 ⑤ ④ AWS社 POC ① 2022年 2023年 1月 2月〜9月 ② ③ ⑥ ★経営レポート1回目 ★経営レポート2回目 ★経営レポート3回目 ★経営レポート4回目 ★経営レポート5回目
30 💡導入時にやっておいてよかったこと 1.社外で有識者を探そう ・他社事例を取りに行こう 2.社内データ利活用ステップを進めよう ・DWH構築のその先は・・・? 3.2年先までのアーキテクチャーを引こう ・リプレイス中に事業フェーズが変わっても大丈夫? ・運用者目線じゃなくてエンジニアで恣意的に進めていない?
31 💡社内データ利活用ステップを進めよう 4月 R&D ①trocco導入計画 ②troccoトライヤル導入 ③リアーキテクト1回目 ④リアーキテクト2回目 ⑤運用リプレイス計画 ⑥運用リプレイス始動
イベント 7月 10月 導入 開発 1月 ⑤ ④ AWS社 POC ① 2022年 2023年 1月 2月〜9月 ② ③ ⑥ ★経営レポート1回目 ★経営レポート2回目 ★経営レポート3回目 ★経営レポート4回目 ★経営レポート5回目 データ 利活用 ⑦等級/役割定義 ⑧人材育成要件 ⑨データ利活用概要策定 ⑩データロードマップ策定 ⑪データ利活用戦略策定 ⑫先行仮説検証 ⑦ ⑧ ⑨ ⑩ ⑪ ⑫
32 💡削減された工数で今度は何に時間を使っていきたいか R&D データエンジニア 初期構築 1.Post CBAをベースに機械学習基盤を構築 2.機械学習基盤を通したデータの利活用分析 1.機械学習前の課題抽出 /定義
2.分析データの収集 3.仮説をプレ分析にて検証 4.有効仮説を元に機械学習を追加開発 5.データの分析 6.分析のレポート off-jt+先端技術検証 データサイエンティスト 新規開発/運用 機械学習基盤を構築 スペシャリスト登用
33 💡やり直すなら気をつけたいこと 33 1.本当に解決したい課題を打ち明けよう ・アップセルの営業を警戒しすぎていない? ・課題を打ち明けてフォロワーなってもらおう 2.社内調整 ・R&Dをやりながら運用計画って実際難しい ・でも引いちゃえ。予算承認も一気に取っちゃえ 3.泥臭さを忘れない
・全部自動化を目指さない。急がば回れ ・無理ならスクリプトを仕込んでしまえ