Upgrade to Pro — share decks privately, control downloads, hide ads and more …

HI emission as a tracer of interstellar reddening

Daniel
July 19, 2017

HI emission as a tracer of interstellar reddening

I presented our new, HI-based extinction map at the 'Advances in Theoretical Cosmology in Light of Data' conference at Nordita, Sweden.

Daniel

July 19, 2017
Tweet

More Decks by Daniel

Other Decks in Science

Transcript

  1. HI emission as a tracer
    of interstellar reddening
    in collaboration with B.
    Hensley & O. Doré
    arXiv:1706.00011
    Daniel Lenz
    Advances in Theoretical Cosmology in Light of Data
    July 19
    © 2017 California Institute of Technology. Government sponsorship acknowledged.

    View Slide

  2. Which foregrounds do we care about?
    "(…) the name of the game is component separation, not noise
    reduction"
    H.K. Eriksen
    ❖ Dust and synchrotron foregrounds in CMB data
    ❖ De-lensing of CMB data for primordial gravitational waves
    ❖ CIB measurements
    ❖ Extinction for cosmological galaxy surveys
    Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    2

    View Slide

  3. Reddening

    View Slide

  4. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    E(B-V)
    ❖ E(B-V) = Extinction in B band - Extinction in V band
    ❖ More dust => larger E(B-V)
    ❖ E(B-V) maps essential for correcting observations for
    Galactic reddening
    4

    View Slide

  5. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    Mapping E(B-V): Direct approach
    ❖ Find many sources with
    known spectrum (e.g.
    stars, passive galaxies)
    ❖ Measure spectra, attribute
    differences to dust
    ❖ E.g. Schlafly+ 2014 used
    500 million stars from
    Pan-STARRS to measure
    reddening to 4.5 kpc
    ❖ Direct measurements are
    hard!
    ❖ Photometric/
    spectroscopic errors
    ❖ Ensuring sources lie
    behind full dust column
    ❖ Ensuring adequate
    number of sources have
    been measured
    5

    View Slide

  6. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    Dust emission as measure of E(B-V)
    ❖ E(B-V) is proportional to the
    dust column, so can convert
    dust column tracer to E(B-V)
    ❖ SFD used dust emission from
    IRAS to derive a calibration
    factor from FIR emission to
    E(B-V)
    ❖ Full-sky, high sensitivity
    measurements
    -2 -0.3
    log10
    (E(B V )SFD
    [mag])
    Reddening map of Schlegel, Finkbeiner,
    and Davis (1998)
    6

    View Slide

  7. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    The SFD reddening map
    ❖ Requires a temperature
    correction to go from dust
    emission to a dust column
    density
    ❖ FIR emission may have
    contributions from Zodiacal
    Light and unresolved galaxies
    -2 -0.3
    log10
    (E(B V )SFD
    [mag])
    Reddening map of Schlegel, Finkbeiner,
    and Davis (1998)
    7

    View Slide

  8. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    The SFD reddening map
    ❖ Requires a temperature
    correction to go from dust
    emission to a dust column
    density
    ❖ FIR emission may have
    contributions from Zodiacal
    Light and unresolved galaxies
    -2 -0.3
    log10
    (E(B V )SFD
    [mag])
    Reddening map of Schlegel, Finkbeiner,
    and Davis (1998)
    7

    View Slide

  9. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    HI emission as basis for E(B-V)
    ❖ Gas and dust are well-coupled in the ISM
    ❖ Perform an SFD-like analysis to convert HI emission to
    E(B-V)
    ❖ Resulting maps free from errors due to dust
    temperature, Zodi, and extragalactic emission
    ❖ Limited by non-HI gas along the line of sight
    8

    View Slide

  10. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    HI4PI Survey
    ❖ Merges data from Effelsberg and Parkes
    ❖ Replaces LAB as state-of-the-art full-sky HI survey
    ❖ Higher sensitivity & resolution, fewer systematics, full sampling
    20
    21
    22
    log(NHI
    [cm 2])
    180
    135 90
    45
    0
    315
    270
    225 180
    60
    30
    0
    30
    60
    HI4PI collaboration

    (2017)
    9

    View Slide

  11. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    1020 1021 1022
    NHI [cm 2]
    10 3
    10 2
    10 1
    100
    E(B V ) [mag]
    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
    NHI [cm 2] ⇥1020
    0.00
    0.01
    0.02
    0.03
    0.04
    0.05
    0.06
    0.07
    0.08
    E(B V ) [mag]
    E(B V ) [mag] = 1.216+0.009
    0.009
    ⇥ NHI [1022 cm 2] + 0.015+0.0002
    0.0002
    [mag] = 0.02406+0.00006
    0.00006
    100
    101
    102
    103
    104
    # data points
    0
    10
    20
    30
    40
    50
    60
    70
    80
    # data points
    1020 1021 1022
    NHI [cm 2]
    10 3
    10 2
    10 1
    100
    E(B V ) [mag]
    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
    NHI [cm 2] ⇥1020
    0.00
    0.01
    0.02
    0.03
    0.04
    0.05
    0.06
    0.07
    0.08
    E(B V ) [mag]
    E(B V ) [mag] = 1.113+0.002
    0.002
    ⇥ NHI [1022 cm 2] + 0.000+0.0001
    0.0001
    [mag] = 0.00570+0.00001
    0.00001
    100
    101
    102
    103
    104
    # data points
    0
    100
    200
    300
    400
    # data points
    The E(B-V)/NHI ratio
    Pan-STARRS E(B-V), Schlafly+ (2014) SFD E(B-V)
    Star-based Dust-based
    10

    View Slide

  12. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    1020 1021 1022
    NHI [cm 2]
    10 3
    10 2
    10 1
    100
    E(B V ) [mag]
    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
    NHI [cm 2] ⇥1020
    0.00
    0.01
    0.02
    0.03
    0.04
    0.05
    0.06
    0.07
    0.08
    E(B V ) [mag]
    E(B V ) [mag] = 1.216+0.009
    0.009
    ⇥ NHI [1022 cm 2] + 0.015+0.0002
    0.0002
    [mag] = 0.02406+0.00006
    0.00006
    100
    101
    102
    103
    104
    # data points
    0
    10
    20
    30
    40
    50
    60
    70
    80
    # data points
    1020 1021 1022
    NHI [cm 2]
    10 3
    10 2
    10 1
    100
    E(B V ) [mag]
    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
    NHI [cm 2] ⇥1020
    0.00
    0.01
    0.02
    0.03
    0.04
    0.05
    0.06
    0.07
    0.08
    E(B V ) [mag]
    E(B V ) [mag] = 1.113+0.002
    0.002
    ⇥ NHI [1022 cm 2] + 0.000+0.0001
    0.0001
    [mag] = 0.00570+0.00001
    0.00001
    100
    101
    102
    103
    104
    # data points
    0
    100
    200
    300
    400
    # data points
    The E(B-V)/NHI ratio
    Pan-STARRS E(B-V), Schlafly+ (2014) SFD E(B-V)
    Star-based Dust-based
    10

    View Slide

  13. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    0 0.05
    E(B V )model
    [mag]
    The E(B-V) map
    40% sky coverage, 16.1’ resolution
    Lenz, Hensley, Doré
    (2017, submitted)
    11

    View Slide

  14. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    -0.01 0.01
    SFD - PG10 [mag]
    Dust systematics
    ❖ Peek & Graves (2010) used
    SDSS passively evolving
    galaxies as "standard crayons"
    ❖ Correction to the SFD map at
    4.5 deg
    12

    View Slide

  15. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    Dust systematics
    -0.01 0.01
    SFD - PG10 [mag] -0.01 0.01
    SFD - Model [mag]
    13
    Based on extragalactic sources Based on galactic HI

    View Slide

  16. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    HI systematics
    20 40 60 80
    |b| [deg]
    0.04
    0.02
    0.00
    0.02
    0.04
    SFD Model [mag]
    100
    101
    102
    103
    104
    105
    # data points
    1 2 3 4
    NHI [1020 cm 2]
    0.04
    0.02
    0.00
    0.02
    0.04
    SFD Model [mag]
    100
    101
    102
    103
    104
    105
    # data points
    14
    Investigate systematics due to complex ISM physics

    View Slide

  17. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    Model extensions
    ❖ Several large-scale data sets
    available, all of which do not
    significantly improve the
    model
    ❖ A future work would need to
    combine multiphase gaseous
    data, FIR dust data, and Pan-
    STARRS/Gaia data
    0.5 1.0 1.5 2.0
    WCO [K km s 1]
    0.04
    0.02
    0.00
    0.02
    0.04
    SFD Model [mag]
    0.5 1.0 1.5 2.0 2.5 3.0
    SCII [nW m 2 sr 1]
    0.04
    0.02
    0.00
    0.02
    0.04
    SFD Model [mag]
    1 2 3 4
    H↵ [Rayleighs]
    0.04
    0.02
    0.00
    0.02
    0.04
    SFD Model [mag]
    100
    101
    102
    103
    104
    105
    # data points
    15

    View Slide

  18. Daniel Lenz, Caltech/JPL An improved, unbiased E(B-V) map
    When and why to use this extinction map
    ❖ New HI based extinction map
    ❖ In line with independent corrections, but much higher
    resolution and better sky coverage
    ❖ Yahata+ (2007) find correlation of SFD with large-scale
    structure
    ❖ For high latitudes, our map overcomes many of the SFD
    problems and is much more sensitive than stellar data-
    based E(B-V) maps
    16

    View Slide