Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Why Nielsen Company's Global Buy Platform Relie...

Darrell Pratt
September 13, 2013

Why Nielsen Company's Global Buy Platform Relies on Couchbase

Darrell Pratt

September 13, 2013
Tweet

More Decks by Darrell Pratt

Other Decks in Technology

Transcript

  1.   WHY  NIELSEN  COMPANY'S  GLOBAL  BUY  PLATFORM  RELIES  ON  

    COUCHBASE     DARRELL  PRATT   ARCHITECTURE  LEADER    
  2. Help  our  clients  have  the  most   complete  understanding  of

      consumers  worldwide.     OUR  MISSION    
  3. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   5

      NIELSEN  ANSWERS  ON  DEMAND   Flexibility • Dynamic “on-the-fly” processing engine • On-Demand products, markets, periods, buyer groups • User role-based reporting • Custom product definitions, hierarchies and characteristics Speed to Insights • Expedited reporting • Roadmaps and guided analysis • Dynamic reporting Integration • Consistent access channel • Internal and external data sources • Support for client business processes
  4. Consumer  foresight     for  faster,  smarter,     more

     confident  decisions   OUR  PROMISE   to  drive  growth  
  5. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   8

      SCAN,  PANEL  AND  LOYALTY   •  Scan     •  Point  of  Sales  data  from  1000’s  of  retailers   •  Weekly  data   •  Disaggregated,  Anonymous  data   •  Billions  of  records  per  week   •  Panel   •  Data  from  more  than  250,000  households  across  25  countries   •  Similar  to  Nielsen  Families  from  View   •  Trip  and  Demographic  data   •  Millions  of  records  a  week   •  Loyalty   •  Loyalty  card  data  from  retailers     •  Basket  level  transacQon  data  –  received  daily  from  thousands  of  stores   •  Some  demographic  data   •  100’s  of  Millions  of  items  weekly  
  6. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   10

      OUR  CLIENTS   •  Manufacturers  -­‐  Kra\,    Procter  &  Gamble,  others   •  Measure  product  success   •  Understand  consumer  behaviors   •  Target  new  products  or  promoQons   •  IdenQfy  new  product  opportuniQes   •  Product  pricing   •  Retailers  –  Safeway,  Tesco,  Walmart     •  Understand  consumer  buying  behavior   •  Store  performance  in  market   •  Comparison  to  compeQtors   •  Product  pricing  
  7. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   16

      FEATURES   •  Single  front-­‐end  web  applicaQon  which  interfaces  with  the  disparate  back-­‐end   data  sources   •  Advanced  BI  capabiliQes   •  User  expressions   •  CondiQonal  formabng   •  Smart  text   •  Smart  linking  of  report  objects   •  Very  few  limits  to  what  user  can  request  with  regards  to  data   •  Most  reports  to  run  under  2  minutes  maximum   •  Loading  of  applicaQon  with  most  data  under  5  seconds  
  8. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   18

      HIGH  LEVEL  VIEW   Presenta(on Logic Storage Service Report2Builder Report2Player Data2Selector Spring2MVC Spring2IOC Couchbase Oracle Job2 Management Data22Access2 Service Caching PorColio2 Manager
  9. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   19

      ARCHITECTURAL  VIEW   Web Front End Portal ReportApp Workspace Admin Java Middle Tier Spring IOC + Custom Couchbase Cluster ElasticSearch Oracle RAC Netezza Tibco ESB
  10. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   20

      TECHNOLOGY  STACK   •  UI  built  on  Sencha  Ext  JS   •  AM  Charts  used  for  charQng   •  D3  used  in  some  edge  case  chart  types   •  Middle  Qer  composed  of  Spring  MVC  and  Spring  IOC   •  JSON  REST  endpoints  through  configuraQon   •  XML  to  JSON  conversion  where  needed   •  SOA  Tier  using  Tibco  AMX  3.2   •  Couchbase  2.1  –  Storage,  Caching  and  Search   •  Hudson,  ArQfactory,  Gradle,  Jasmine,  JS  Duck  
  11. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   23

      SOLUTION  REQUIREMENTS     •  Our  needs   •  Scalability   •  Shared  cache/storage  for  separate  applicaQons   •  Speed   •  Out  of  JVM  process   •  Support   •  As  an  enterprise,  we  need  24x7  support   •  Our  wants   •  Document  storage   •  Map/reduce  views   •  Full  text  search  
  12. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   24

      WHY  NO-­‐SQL   •  RelaQon  Data  Model  Overload   •  Complexity  of  objects  in  system  causes  churn  in  DB  models   •  Poor  performance  due  to  complexity   •  Need  to  get  out  of  business  of  data  transformaQons   •  Flexibility  of  data  model  is  near  number  one  requirement   •  Scalability  with  modest  hardware  and  ease   •  Data  Sharding  and  replicaQon  for  reliability   •  JSON  encoding   •  Used  throughout  UI,  important  to  store  as  such  
  13. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   25

      COUCHBASE  –  USAGE   •  Storage  of  naQve  JSON  data  from  applicaQon   •  User  customizaQons  of  reports   •  Report  definiQons   •  Request  instances  –  Data  selecQons   •  BI  Responses   •  Metadata  change  management   •  CharacterisQcs  can  and  do  change  weekly   •  Views  created  to  track  user  usage  and  items  affected  by  these  changes  
  14. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   27

      MAKE  IT  RESPONSIVE   •  Asynchronous  UI     •  ReporQng  data  gets  BIG   •  Breaking  up  a  report  into  objects   •  Asynchronously  store  chunked  data  in  Couchbase   •  UI  only  requests  chunk  needed  
  15. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   28

      MOVING  DATA  EFFICIENTLY   •  Life  of  a  request  for  data  moves  through  several  systems   •  Web,  Tibco  AMX,  Tibco  EMS,  Composite,  Database   •  Use  Couchbase  as  a  document  storage  system   •  Enables  a  pass  by  reference  methodology   •  Storage  of  data  in  format  closest  to  what  is  displayed  to  user   •  True  persistent  storage  and  in-­‐memory  performance  
  16. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   30

      DIMENSIONAL  DATA  CHANGES   •  Our  data  is  made  up  dimensions  (Product,  Market,  Period,  Fact…)  with  each   dimension  described  by  CharacterisQcs   •  CharacterisQc  data  is  large  and  changing   •  New  products  introduced   •  Human  error  on  ingest   •  Manufacturers  change  their  minds   •  Changes  occur  weekly  if  not  daily   •  Changes  here  create  waves  throughout  the  system  
  17. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   31

      COPING  WITH  CHANGE   •  Metadata  change  management  process   •  Catch  the  differenQal  changes  at  incepQon   •  Send  those  changes  through  system  on  ESB   •  User  saved  data  needs  to  be  updated  or  invalidated   •  Saved  selecQons   •  Saved  reports   •  Segment  definiQons   •  All  of  these  items  contain  this  characterisQc  data   •  Before  Couchbase  -­‐>  Stored  as  CLOBS  in  Oracle   •  Full  table  scans  and  programs  to  read  all  data  and  change  where  it  was  found   •  With  Couchbase,  MapReduce  Views  created  to  easily  find  items  with  reference   to  characterisQc  data  with  changes   •  Easy  to  find,  easy  to  fix.  Huge  Qme  savings  
  18. Copyright  ©2012  The  Nielsen  Company.  ConfidenQal  and  proprietary.   33

      WHAT’S  NEXT     •  Couchbase  as  a  first  class  data  storage  applicaQon  from  mainframe  acquisiQon   •  Full  storage  of  metadata  in  Couchbase     •  Map/reduce  views  to  capture  staQsQcs  on  data  usage  by  clients   •  PredicQve  analyQcs  using  collaboraQve  data  from  Couchbase  views