Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Clustering Lightning into Storms

datawookie
September 12, 2013

Clustering Lightning into Storms

A short talk that I gave at the LIGHTS 2013 Conference (Johannesburg, 12 September 2013). The slides are a little short on text because I like the audience to hear the content rather than read it, but the central message is that clustering lightning discharges into storms is not a trivial task. But it is a worthwhile challenge because it can lead to some very interesting science!

datawookie

September 12, 2013
Tweet

More Decks by datawookie

Other Decks in Science

Transcript

  1. Clustering Lightning
    Andrew B. Collier
    [email protected]
    http://www.exegetic.biz/

    View Slide

  2. View Slide

  3. View Slide

  4. View Slide

  5. Clustering & Complexity
    k-means

    Time: O(nk)

    Space: O(n+k)
    Hierarchical

    Time: O(n2 log n)

    Space: O(n2)
    where n = number of points
    k = number of clusters

    View Slide

  6. Hierarchical Clustering
    A method of cluster analysis which tries
    to build a hierarchy of clusters.
    Agglomerative: each observation starts in its own cluster, and
    pairs of clusters are merged.
    Divisive: all observations start in one cluster, and splits are
    performed recursively.

    View Slide

  7. Distance Matrix
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
    [1,] 0.00000 0.90660 0.98676 2.59730 1.21076 0.64162 1.37218 1.83724 1.33919 1.21728
    [2,] 0.90660 0.00000 1.54973 1.81014 0.51097 1.22292 0.76644 1.29365 0.46367 1.37455
    [3,] 0.98676 1.54973 0.00000 2.69411 2.01335 1.56353 1.51223 1.73953 1.80822 0.61954
    [4,] 2.59730 1.81014 2.69411 0.00000 1.97469 3.03009 1.24766 0.97643 1.35618 2.12959
    [5,] 1.21076 0.51097 2.01335 1.97469 0.00000 1.27080 1.18563 1.68454 0.69746 1.88420
    [6,] 0.64162 1.22292 1.56353 3.03009 1.27080 0.00000 1.88041 2.38623 1.68528 1.85847
    [7,] 1.37218 0.76644 1.51223 1.24766 1.18563 1.88041 0.00000 0.52860 0.53994 1.04872
    [8,] 1.83724 1.29365 1.73953 0.97643 1.68454 2.38623 0.52860 0.00000 0.99706 1.15659
    [9,] 1.33919 0.46367 1.80822 1.35618 0.69746 1.68528 0.53994 0.99706 0.00000 1.47596
    [10,] 1.21728 1.37455 0.61954 2.12959 1.88420 1.85847 1.04872 1.15659 1.47596 0.00000
    [11,] 11.70194 11.19894 11.09504 9.49063 11.45953 12.30475 10.45600 9.93351 10.79570 10.57239
    [12,] 11.01346 10.37439 10.57979 8.58636 10.55138 11.55993 9.67963 9.18187 9.93618 9.99942
    [13,] 10.15958 9.63720 9.59680 7.92908 9.89656 10.75400 8.89718 8.37645 9.23239 9.05385
    [14,] 8.65864 7.98640 8.31356 6.19131 8.15378 9.18362 7.30701 6.82147 7.54379 7.71149
    [15,] 11.16103 10.79475 10.43696 9.21898 11.12921 11.79252 10.03042 9.50193 10.43790 9.97271

    View Slide


  8. Euclidean Distance (Pythagoras' Theorem)

    Geographical Distance (“great circle”)
    – Cosine
    – Haversine
    – Vincenty Sphere
    – Vincenty Ellipsoid
    Distance Measures

    View Slide

  9. Big steps (SIGNIFICANT)
    Small steps (INSIGNIFICANT)

    View Slide

  10. View Slide


  11. Minimum between-cluster distance

    Maximum within-cluster distance

    View Slide

  12. View Slide

  13. We could just take a statistical approach...
    … but why ignore domain-specific knowledge?

    View Slide

  14. View Slide

  15. View Slide

  16. View Slide

  17. View Slide

  18. View Slide

  19. View Slide

  20. Conclusion

    Isolate storms
    easily identified

    Clustering not as
    easy as it looks

    Need to use other
    information

    View Slide

  21. Strauss, C., Rosa, M. B., & Stephany, S. (2013). Spatio-temporal clustering and density
    estimation of lightning data for the tracking of convective events. Atmospheric Research,
    134, 87–99. doi:10.1016/j.atmosres.2013.07.008.

    View Slide

  22. Kernel Density
    Kernel Density & Spatio-
    Temporal Clustering

    View Slide

  23. Why is this important?
    To gain a better understanding of

    spatial and

    temporal
    distribution of lightning within a storm we need to actually isolate
    individual storms.
    http://www.wallconvert.com/
    Tracking convective events in
    countries that lack weather radar
    coverage.

    View Slide

  24. Strauss, C., Rosa, M. B., & Stephany, S. (2013). Spatio-temporal clustering and density
    estimation of lightning data for the tracking of convective events. Atmospheric Research,
    134, 87–99. doi:10.1016/j.atmosres.2013.07.008.
    black = precipitation
    grey = lightning

    View Slide

  25. Yair, Y. Y., Aviv, R., & Ravid, G. (2009). Clustering and
    synchronization of lightning flashes in adjacent
    thunderstorm cells from lightning location networks data.
    Journal of Geophysical Research, 114, D09210.
    doi:10.1029/2008JD010738.

    View Slide