Upgrade to Pro — share decks privately, control downloads, hide ads and more …

先端技術とメディア表現(FTMA2018) 第2回レポートまとめ

先端技術とメディア表現(FTMA2018) 第2回レポートまとめ

Digital Nature Group

May 29, 2018
Tweet

More Decks by Digital Nature Group

Other Decks in Research

Transcript

  1. QVNQQSPCFํࣜͰɼΞϒϨʔγϣϯ౳ʹΑΔද໘ͷมԽΛ ಈతʹ؍ଌ͢ΔγεςϜ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ಈతʹ؍ଌ͢ΔγεςϜ͸͜Ε·Ͱͳ͔ͬͨ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ QVNQQSPCFํࣜͰɼEFMBZͤͨ͞ϨʔβʔΛ౰ͯͳ͕Βಈత ʹ؍ଌ͢Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹࡱ૾͠ɼҰఆ࣌ؒޙͷܗঢ়ͱൺֱͯ͠ຊ౰ʹͱΕ͍ͯ

    Δ͔֬ೝͨ͠ ٞ࿦͸͋Δʁ ಈతʹͱΕΔͱͲΕ͘Β͍خ͍͠ͷͩΖ͏͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ %JSFDUGFNUPTFDPOEMBTFSTVSGBDFOBOPNJDSPTUSVDUVSJOHBOE JUTBQQMJDBUJPOT Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals (Light: Science Applications 2017, Fang, Ranran and Vorobyev, Anatoliy and Guo, Chunlei) ࢁຊ݈ଠ َίʔε
  2. ௚઀ϑΣϜτΛ౰ͯͯՃ޻͢Δ࿦จʹؔ͢Δ3FWJFX࿦จ ද໘ʹφϊϚΠΫϩߏ଄Λ௚઀Ճ޻ ۚଐʹର͢ΔपظతͳϨʔβʔՃ޻ߏ଄ ୯ମͷφϊϗʔϧ΍ΞϨΠঢ়ͷφϊϚΠΫϩϗʔϧ φϊߏ଄ςΫενϟ͕ࢪ͞ΕͨϚΠΫϩߏ଄ ϑΣϜτϨʔβʔʹΑΔফڈ΍ݚຏ ΞϓϦέʔγϣϯ ͲΜͳ΋ͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ $POUSPMMFEOBOPTUSVDUSVSFTGPSNBUJPOCZVMUSBGBTUMBTFS

    QVMTFTGPSDPMPSNBSLJOH Direct femtosecond laser surface nano/microstructuring and its applications (Laser Photonics Reviews 2013: Vorobyev, Anatoliy Y and Guo, Chunlei) ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࢁຊ݈ଠ َίʔε
  3. ৭Λூࠁ͢ΔͨΊͷφϊߏ଄Λۚଐද໘ʹϑΣϜτϨʔβʔ Ͱ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ͳͷͰɼίϯτϩʔϧ͞Εͨφϊߏ଄Λۚଐද໘ʹ ϨʔβʔͰߏங͍ͯ͘͠ख๏ͷ৽͠͞ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ φϊߏ଄Λ੍ޚ͢ΔͨΊͷϨʔβʔೖࣹ֯౓ͳͲͷઃܭ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞ͬͯ4&.ࡱ૾ͷ֬ೝʴ࣮෺ͷΧϥʔ֬ೝ

    ٞ࿦͸͋Δʁ ͳͥଟ͘ͷ৔߹ɼ̎࣠ʹ෼͚ͨޙ$$%ʹೖΕΔޫ࿏Λ࡞Δͷ ͔ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ -BTFSJOEVDFEQFSJPEJDTVSGBDFTUSVDUVSFTŠBTDJFOUJpD FWFSHSFFO Controlled nanostructrures formation by ultra fast laser pulses for color marking (Optics express 2010, Dusser, Benjamin and Sagan, Z and Soder, Herv{\'e} and Faure, Nicolas and Colombier, Jean-Philippe and Jourlin, Michel and Audouard, Eric) ࢁຊ݈ଠ َίʔε
  4. -BTFS*OEFDVEF1FSJPEJD4VSGBDF4USVDUVSFT -*144 ʹؔ͢Δ 3FWJFX࿦จ -4'-ͱ)4'-ͷ̎छྨͷϝΧχζϜ͕͋Δ ੍ޚʹ͸TJOHMFQVMTFTFRVFODF EPVCMFQVMTFTFRVFODFɼ࣌ ؒ෼ׂճં͕͋Δ ΞϓϦέʔγϣϯͱͯ͠͸ɼߏ଄৭ɾૄਫੑɾࡉ๔૿৩ɾ τϥΠϘϩδʔʢ५׈ɾຎࡲͳͲʣͳͲ͕ڍ͛ΒΕΔ

    ͲΜͳ΋ͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ (FOFSBUJPOPGCJPJOTQJSFETUSVDUVSBMDPMPSTWJBUXPQIPUPO QPMZNFSJ[BUJPO Laser-induced periodic surface structures—a scientific evergreen (IEEE Journal of Selected Topics in Quantum Electronics 2017: Bonse, J{\"o}rn and H{\"o}hm, Sandra and Kirner, Sabrina V and Rosenfeld, Arkadi and Kr{\"u}ger, J{\”o}rg) ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࢁຊ݈ଠ َίʔε
  5. ϞϧϑΥ௏ͷߏ଄ͷΑ͏ͳ΋ͷΛQIPUPOQPMZNFSJ[BUJPO 11 Ͱ࡞੒͢Δ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ϙϦϚʔ࢖ͬͯΔ͔Βɼෳࡶͳखॱͳ͠ʹ̏࣍ݩతʹߏ଄͕ ࡞ΕΔ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ̏࣍ݩతʹ࡞ΔͨΊʹϙϦϚʔ࢖༻͢ΔͷͱɼϨʔβʔՃ޻ ͷख๏

    Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞ͬͨ΋ͷͷ4&.ͱ৭ݕূ ٞ࿦͸͋Δʁ ϙϦϚʔ࢖ͬͯ̏࣍ݩͷ໰୊ղܾ͸ͲΕ͘Β͍خ͍͠ͷ͔Α ͘Θ͔Μͳ͍ ࣍ʹಡΉ΂͖࿦จ͸ʁ &MFDUSJDBMMZBOEFMFDUSPIZESPEZOBNJDBMMZESJWFOQIBTF USBOTJUJPOBOETUSVDUVSBMDPMPSTXJUDIJOHPGPMJHPNFS UFUIFSFE%DPMMPJE Generation of bioinspired structural colors via two-photon polymerization (Scientific reports 2017, Zyla, Gordon and Kovalev, Alexander and Grafen, Markus and Gurevich, Evgeny L and Esen, Cemal and Ostendorf, Andreas and Gorb, Stanislav) ࢁຊ݈ଠ َίʔε
  6. ిѹͳͲΛม͑Δ͜ͱͰɼ݁থͷ޲͖Λม͑ͯʢӷথతʣɼ ߏ଄৭ͷεΠονϯάΛ࣮ݱ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ BMQIB[JSDPOJVNQIPTQIBUFΛ࢖ͬͯ៉ྷʹߏ଄৭ͷεΠον ϯάΛ࣮ݱͨ͠఺ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ίϩΠυঢ়ͷBMQIB[JSDPOJVNQIPTQIBUFͷܗঢ়ͱిՙΛͲ͏ ͔͚Δ͔ͷઃܭ࿦ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ

    ࣮ࡍʹ͔͚ΔిѹͳͲΛม͑ͨΓͯ͠ɼ݁ՌΛݟͨΓ ٞ࿦͸͋Δʁ ͲΕ͘Β͍ࣗ༝౓ߴ͍ͷͩΖ͏͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ 1SPHSBNNJOH/BOPQBSUJDMFTJO.VMUJTDBMF0QUJDBMMZ .PEVMBUFE"TTFNCMZBOE1IBTF4XJUDIJOHPG4JMJDPO /BOPQBSUJDMF"SSBZ Electrically and electrohydrodynamically driven phase transition and structural color switching of oligomer tethered 2D colloid (RSC Advances 2018, Masud, Aurangzeb Rashid and Hong, Seung-Ho and Shen, Tian-Zi and Shahzad, Amir and Song, Jang-Kun) ࢁຊ݈ଠ َίʔε
  7. φϊύʔςΟΫϧͷύλʔϯΛɼύϧεͷΤωϧΪʔ΍มߋ ͳͲʹΑͬͯௐ੔ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ φϊύʔςΟΫϧΛਖ਼֬ʹௐ੔Ͱ͖ͯɼҐ૬΋ม͑ΕΔͱ͜ Ζ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ϩʔβʔͷύϧε΍ɼ̎ճ໨Ճ޻ͳͲʢਖ਼֬ʹ͸Θ͔Γ͖ͬ ͯͳ͍ʣ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ

    ࣮ࡍʹ࡞ͬͯ4&.ؚΊܭଌ ٞ࿦͸͋Δʁ ੩తʹʁҐ૬ม͑ΕΔͱͲ͏خ͍͠ͷ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ -BTFS*OEVDFE(SBQIFOFCZ.VMUJQMF-BTJOH5PXBSE &MFDUSPOJDTPO$MPUI 1BQFS BOE'PPE Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array (ACS nano 2018, Wang, Letian and Rho, Yoonsoo and Shou, Wan and Hong, Sukjoon and Kato, Kimihiko and Eliceiri, Matthew and Shi, Meng and Grigoropoulos, Costas P and Pan, Heng and Carraro, Carlo and others) ࢁຊ݈ଠ َίʔε
  8. άϥϑΣϯΛ$0ϨʔβʔʹΑͬͯҥ෰΍ࢴɼ৯΂෺ʹࠁҹ ͢Δ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ γϯάϧޫ࿏ͰEFGPDVTϝιουΛ࢖͏͜ͱͰ࣮ݱͨ͠఺ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ EFGPDVTʹ͢Δͱ෺ମ΁ͷ౰ͨΓํ͕มΘΔͷͰɼͦΕΛ༻ ͍Δ͜ͱͰ̍ͭͷޫ࿏ͰͷϨʔβʔՃ޻Λ࣮ݱͨ͠ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞੒͠ɼ4&.ͱ࣮෺ͷ֬ೝ

    ٞ࿦͸͋Δʁ άϥϑΣϯΛ৯΂෺ʹࠁΊΔͱԿ͕خ͍͠ͷ͔ ৯΂෺ͷ੍໿͸ͲΕ͘Β͍͋Δͷ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ )PMPHSBQIJD3FTPOBOU-BTFS1SJOUJOHPGNFUBTVSGBDFTVTJOH QMBTNPOJDUFNQMBUF Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food (ACS nano 2018, Chyan, Yieu and Ye, Ruquan and Li, Yilun and Singh, Swatantra Pratap and Arnusch, Christopher J and Tour, James M) ࢁຊ݈ଠ َίʔε
  9. ϓϥζϞϯͷςϯϓϨʹϨʔβʔͰϝλද໘Λ࡞Δ͜ͱ ϗϩύλʔϯΛ͏ͬͯΔͬΆ͍ʁʢ'SFTOFM;POF1MBUFͱͷൺֱ͕Α͘ग़͖ͯ ͨʣ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ 4-.·Ͱ࢖ͬͯ݁ߏޫֶͷηοτΞοϓ͕ॏ͍ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ 4-.࢖ͬͯ؆୯ʹʁճંϨϯζʁΛ࡞͍ͬͯΔ఺ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞ͬͨ΋ͷͷࡱӨ

    ٞ࿦͸͋Δʁ ͜Ε͕Ͱ͖ΔͱԿ͕خ͍͠ͷ͔Α͘Θ͔Βͳ͔ͬͨ ࣍ʹಡΉ΂͖࿦จ͸ʁ -JHIU*OEVDFE5VOJOHBOE3FDPOpHVSBUJPOPG/BOPQIPUPOJD 4USVDUVSFT Holographic Resonant Laser Printing of metasurfaces using plasmonic template (ACS Photonics 2018, Schultz Carstensen, Marcus and Zhu, Xiaolong and Esther Iyore, Oseze and Mortensen, N Asger and Levy, Uriel and Kristensen, Anders) ࢁຊ݈ଠ َίʔε
  10. φϊϑΥτχοΫߏ଄΁ͷϨʔβʔՃ޻ܥͷ3FWJFX࿦จ Մٯੑͷ͋ΔมԽΛऑϨʔβʔՃ޻Ͱੜ੒ Մٯੑͷͳ͍มԽΛϨʔβʔՃ޻Ͱੜ੒ Մٯੑͷ͋ΔՃ޻Λࢪ͢͜ͱ͕Ͱ͖Δ͜ͱʹڻ͖ ͲΜͳ΋ͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ )ZESPEZOBNJDSPUBUJOHNPUJPOPGNJDSPNPUPSTGSPN GFNUPTFDPOEMBTFSNJDSPGBCSJDBUJPO Light-Induced Tuning

    and Reconfiguration of Nanophotonic Structures (Laser Photonics Reviews 2017: Makarov, Sergey V and Zalogina, Anastasia S and Tajik, Mohammad and Zuev, Dmitry A and Rybin, Mikhail V and Kuchmizhak, Aleksandr A and Juodkazis, Saulius and Kivshar, Yuri) ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࢁຊ݈ଠ َίʔε
  11. ϨʔβʔՃ޻ͰϚΠΫϩλʔϏϯΛੜ੒ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ νϧτͷ֯౓΍ϒϨʔυͷ௕͞ɾ਺Λੜ੒࣌ʹௐ੔͢Δ͜ͱ ͕Ͱ͖Δ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ μΠϨΫτϑΣϜτϨʔβʔՃ޻ͰλʔϏϯΛ௚઀࡞ΕΔ ͔͠΋ੜ੒ͷύϥϝʔλ΋࣋ͯΔ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞ͬͯɼࡱ૾ͯ͠ɼྲྀମʹྲྀΕΛൃੜͤͯ͞ճΔ͜ͱ

    ͷݕূ ٞ࿦͸͋Δʁ ̏࣍ݩܗঢ়Λ͜Μͳʹਖ਼֬ʹ࡞ΔͨΊͷ۩ମతͳख๏͸ʁʢઆ ໌͸গͳ͔ͬͨʣ ࣍ʹಡΉ΂͖࿦จ͸ʁ $PNQMFYEFXFUUJOHTDFOBSJPTPGVMUSBUIJOTJMJDPOpMNTGPS MBSHFTDBMFOBOPBSDIJUFDUVSFT Hydrodynamic rotating motion of micromotors from femtosecond laser microfabrication (Sensors and Actuators B: Chemical 2018, Guan, Wei and Lv, Chao and Xu, Yi-Shi and Yu, Yan-Hao and Xia, Hong and Niu, Li-Gang and Liu, Sen and Wang, Gong and Wang, Ying-Shuai and Sun, Hong-Bo) ࢁຊ݈ଠ َίʔε
  12. ୯݁থͷബ͍ϑΟϧϜͷෳࡶͳEFXFUUJOHΛ׬શʹίϯτ ϩʔϧ͢Δ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ΊͪΌബ͍γϦίϯϑΟϧϜͷEFXFUUJOHΛ׬શʹίϯτϩʔϧ ͯ͠ɼ୯݁থͷφϊߏ଄Λ͍ΖΜͳύλʔϯͰEFXFUUJOHͤͨ͞ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ʢཧղͰ͖·ͤΜͰͨ͠ʣ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞ͬͨ΋ͷͷࡱ૾ٴͼมԽͷܭଌ

    ٞ࿦͸͋Δʁ ΋ͬͱ΋Α͘Θ͔Βͳ͔ͬͨʢಡΉ࿦จϛεͬͨʣ ࣍ʹಡΉ΂͖࿦จ͸ʁ 0QUJDBM'JFME&OIBODFNFOUJO"V/BOPQBSUJDMF%FDPSBUFE /BOPSPE"SSBZT1SFQBSFECZ'FNUPTFDPOE-BTFSBOE5IFJS 5VOBCMF4&34 Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures (Science advances 2017, Naffouti, Meher and Backofen, Rainer and Salvalaglio, Marco and Bottein, Thomas and Lodari, Mario and Voigt, Axel and David, Thomas and Benkouider, Abdelmalek and Fraj, Ibtissem and Favre, Luc and others) ࢁຊ݈ଠ َίʔε
  13. ۚͷφϊύʔςΟΫϧͷEFDPSBUJPOΛɼϑΣϜτϨʔβʔՃ޻Ͱ४උͨ͠φϊ ϩουΞϨΠʹࢪͨ͠ʢۚφϊϩουͷੜ੒ʣ ͦͯ͠ද໘૿ڧϥϚϯࢄཚΛՄมͳ΋ͷʹͨ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ϑΣϜτՃ޻ͰφϊϩουΛ࡞ͬͱ͍ͯͦ͜ʹۚΛম͖ͳ· ͠Ͱ෇ணͤ͞Δ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ۭؾதͰγϦίϯʹՃ޻ˠਫதͰ·ͨՃ޻ɼͰφϊϩουΛ ࡞Γɼͦ͜ʹۚͷφϊύʔςΟΫϧΛ͚͍ͭͯ͘

    Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ੡଄ϓϩηεΛ௨ͯ͠ɼ4&.ࡱ૾ݕূ ٞ࿦͸͋Δʁ ۚφϊϩουͷΞϓϦέʔγϣϯͷ޿͞͸ ࣍ʹಡΉ΂͖࿦จ͸ʁ 4VQFSIZESPQIPCJDBOEDPMPSGVMDPQQFSTVSGBDFTGBCSJDBUFE CZQJDPTFDPOEMBTFSJOEVDFEQFSJPEJDOBOPTUSVDUVSFT Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable SERS Applications (ACS applied materials interfaces 2017, Cao, Wei and Jiang, Lan and Hu, Jie and Wang, Andong and Li, Xiaowei and Lu, Yongfeng) ࢁຊ݈ଠ َίʔε
  14. FaceShop: Deep Sketch-based Face Image Editing ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ

    ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ("/εέονϕʔεͰϢʔβʔ͕௚ײతʹը૾ Λฤू͢Δ͜ͱ͕Ͱ͖ΔΑ͏ͳإը૾ฤूͷͨΊ ͷ৽نγεςϜ χϡʔϥϧωοτϫʔΫΛը૾ิ׬ͱը૾ม׵ͷ ೋͭͷಉ࣌λεΫͰ܇࿅ ΠϯλϥΫςΟϒͳը૾ฤूͷͨΊͷϑϨʔϜϫʔ ΫͰˢΛ࠷ॳʹ΍ͬͨ Πϯϓοτը૾ʹϚεΫΛ͔͚ͯϢʔβʔͷೖྗ ৘ใ͕ෆ׬શͰ͋ͬͨͱ͖ͷ࠶ݱΛͯ͠΋ੜ੒ʹ ੒ޭͨ͠ɹࣗಈߏஙͱը૾ิ׬͕ͲͪΒ΋ߴ඼࣭ কདྷతʹ͸ΑΓߴղ૾౓͔ͭଟ༷ͳσʔληοτ Ͱ܇࿅Λߦ͍͍ͨ Siggraph’18 'UNB
  15. 
 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ σΟʔϓχϡʔϥϧωοτϫʔΫΛ࢖༻ͯ͠ೖྗ ҆੩͔ΒͦΕʹಉظͨ͠εϐʔνΞχϝʔγϣϯ Λੜ੒

    Իૉϥϕϧͷೖྗγʔέϯε͔Βޱͷಈ͖·Ͱͷ ೚ҙͷඇઢܗϚοϐϯάΛֶश͢ΔεϥΠσΟϯ ά΢Οϯυ΢༧ଌࢠΛ࢖༻ ৽ͨʹೖྗ͞ΕͨԻ੠ʹରԠ͢Δ͜ͱ͕Մೳ طଘͷख๏ͱͷޓ׵ੑ͕͋Δ ςετࡁΈͷεϐʔΧʔʹ͍ͭͯͷఆྔධՁͱશ ͘৽͍͠εϐʔΧʔʹର͢Δओ؍ධՁʢϢʔβʔ ελσΟʣ ࡉ΍͔ͳײ৘Λදݱ͢Δʹ͸͸Δ͔ʹେ͖ͳεέʔ ϧͷχϡʔϥϧωοτϫʔΫΛ܇࿅͠ͳ͚Ε͹ͳ Βͣඅ༻ରޮՌͷߴ͍แׅతͳσʔληοτඞཁ Siggraph’17 'UNB A Deep Learning Approach for Generalized Speech Animation
  16. 
 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ϦΞϧλΠϜإ໘ϞʔγϣϯΩϟϓνϟͱΞΠτ ϥοΩϯάΛ༻͍ͯ73ͰϏσΦձٞΛՄೳʹ͢ Δը૾ϕʔεͷख๏

    ୯؟ը૾͔ΒϦΞϧλΠϜͰإͷΞχϝʔγϣϯ Λ࠶ߏ੒ Ξχϝ͕ϦΞϧ ࣮ࡍͷϏσΦͱ߹੒͞Εͨग़ྗͱͷؒͷ৭ࠩͷఆ ྔධՁʢإ໘Լ෦ʣͱɺઐ໳ՈਓͷϢʔβʔ ελσΟ Ξχϝʔγϣϯʹ͓͚Δ಄෦ͷಈ͖͕ݻఆ͞ΕΔ ͷͰɺ൅ͷໟΛؚΉΞΫλʔͷഎܠͷ࠶߹੒ͷݚ ڀ͕ඞཁ ࣍ͷεϥΠυͷ࿦จʢ͜ͷஶऀͷࠓ೥ͷ 4*((3"1) ͷ΍͕ͭಡΈ͔͚ͨͬͨͲΞϒετ ͔͠ݟ͔ͭΒͳ͔ͬͨɺಈը͸͋ͬͨ 'UNB Siggraph’17 FaceVR: Real-Time Gaze-Aware Facial Reenactment in Virtual Reality
  17. 
 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ಑ମɺ಄෦ɺද৘ɺࢹઢͷϦΞϧλΠϜ࠶ݱ͕Մ ೳͳ঻૾ըϏσΦͷੜ੒ ιʔεΞΫλʔͷ಄෦ͷಈ͖ͱ಑ମͷಈ͖Λϩό

    ετʹ௥੻ιʔεΞΫλʔͷಈ͖ΛλʔήοτΞ ΫλʔʹϑΥτϦΞεςΟοΫʹϚοϐϯά ϑϧϖʔύʔಡΉ͑ͯ Siggraph’18 'UNB HeadOn: Real-time Reenactment of Human Portrait Videos
  18. 
 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ੩ࢭը͔ΒࣗಈతʹΞχϝʔγϣϯΛੜ੒͢Δٕ ज़ɹϏσΦͷإͷಈ͖Λ੩ࢭըʹରͯ͠ద༻͠ײ ৘දݱΛՄೳʹ͢Δ

    ૉࡐͱͳΔϏσΦͷಈ͖Λ໛฿͢Δ̎%ϫʔϓΛ ར༻ͯ͠঻૾ըΛΞχϝʔτՃ͑ͯ͜Ε͚ͩͰ ಘΒΕͳ͍γϫ΍ޱ಺ͳͲͷ৘ใ௥Ճ λʔήοτͷը૾͸Ұຕ͚ͩͰ͓L Πϯλʔωοτ্ͷ঻૾ըΛ࢖༻ͯ͠Ξχϝʔγϣ ϯΛ࡞੒ϢʔβʔελσΟ ಄෦ͷಈ͖͸੍ݶ͞ΕΔτϥοΧʔͷੑೳʹࠨ ӈ͞ΕΔ໨Λดͨ͡ঢ়ଶ͸࠶ݱ͖͠Εͳ͍ ·͋ ॠ͖͸ߴ଎ͳͷͰ໰୊ͳ͍ͱ΋ݴ͑Δ 'UNB Bringing Portraits to Life
  19. 
 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ैདྷͷإೝٕࣝज़๊͕͍͑ͯͨԣإ΁ͷऑ͞Λղ ফ͢ΔͨΊͷԣإτϨʔχϯάηοτ֦ுΞϓϩʔ ν

    ैདྷ͸ਖ਼໘إͱԣإͷ܇࿅ྔ͕ҧ͍͍͗ͯͨ͢ͷ Ͱɺಛ௃ۭؒʹ͓͍ͯ౳ՁͳϚοϐϯάΛ࣮ߦ͠ ͯζϨΛղফ ࣮૷͕؆୯͔ͭܰྔͳɺԣإ΁ͱରॲΞϓϩʔν Λͱ͍ͬͯΔ఺ ԣإ͔Βಛ௃ΛϚοϐϯάͯ͠ਖ਼໘إΛ࠶ߏ੒͢ Δ͜ͱʹ੒ޭͨ͠ Pose-Robust Face Recognition via Deep Residual Equivariant Mapping 'UNB
  20. 
 Fast Deep Matting for Portrait Animation on Mobile Phone

    ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ϞόΠϧػثͷͨΊͷϦΞϧλΠϜࣗಈσΟʔϓ ը૾ϚοςΟΠϯάͱͦΕʹجͮ͘Ξχϝʔγϣ ϯੜ੒ %//͕ը૾ηάϝϯςʔγϣϯΛߦ͏ϒϩοΫ ͱ༧ଌ͞Εͨૈ͍όΠφϦϚεΫΛਫ਼៛ʹ௚͢ϑΣ βϦϯάϒϩοΫͰߏ੒ ߴ଎σΟʔϓը૾ϚοςΟϯάωοτϫʔΫ͕Ϟ όΠϧͰ࣮૷Մೳ $16͓Αͼ(16Ͱಈ࡞ͤ͞ॲཧ଎౓Λܭଌ ͜ͷख๏Ͱ͸ೖྗը૾Λμ΢ϯαϯϓϦϯάͯ͠ ͍ΔͨΊ൅ͷໟͳͲͷࡉ͔͍෦෼ʹؔͯ͠͸ແཧ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ˌ'5."̍̔
  21. 
 ܳज़දݱͷςΫενϟΛอ࣋͠ͳ͕ΒݩͱͳΔϏ σΦͱҐஔ߹੒͠ϙʔτϨΠτΞχϝΛੜ੒͢Δ χϡʔϥϧωοτϫʔΫϕʔεͷελΠϧసૹ ϑΥτελΠϧͷϖΞ͕༩͑ΒΕΔͱࣗಈతʹς Ϋενϟ߹੒ͷϑϨʔϜϫʔΫ΁ͷೖྗͱͯ͠࢖ ༻Ͱ͖ΔΨΠσΟϯάνϟϯωϧΛࣗಈੜ੒ બ୒͞Εͨܳज़తϝσΟΞͷࡉ͔͍ςΫενϟΛ อશͰ͖Δ ઌߦݚڀͱͷൺֱΛߦ͍͜ͷख๏͕Ҏલͷख๏ͷ

    ܽ఺Λվળ͍ͨ͠Δ͜ͱΛূ໌͢Δ ֹͷγϫ΍ޱ඘ͳͲॏཁͳҙຯΛ࣋ͭઢܗ৘ใΛ ͏·͘෼཭ͯ͠ѻ͍͖͠Εͳ͍ Example-Based Synthesis of Stylized Facial Animations ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ 4*((3"1) ˌ'5."̍̔
  22. 
 ඇ୯؟୯਺ө૾ʢΠϯλʔωοτө૾ͳͲʣΛ༻ ͍ͯإͷԋग़Λࣗಈతʹ࠾औ͠࠶ߏ੒͢Δγες Ϝ إΛ௚઀Ωϟϓνϟʔ͢Δͷ͸ࠔ೉ͳͷͰϏσΦ ϕʔεͰΩϟϓνϟʔ͠࠶ߏ੒ إͷಛ௃ͱӨͷ৘ใͷ૒ํΛ࠶ߏ੒ʹར༻ إͷ࠶ߏ੒ͷਖ਼֬ੑ͕େ෯ʹ޲্ͨ͠ Πϯλʔωοτ্ͷಈըͰγεςϜΛςετͨ͠ ͱ͜Ζ੍ޚ͞Ε͍ͯͳ͍র໌ԼͰ΋ݸਓؒͷܗঢ়

    ࠩ͸ࠀ෰Ͱ͖ͨɹઌߦݚڀͱͷ݁Ռൺֱ ൅ͷໟɺϝΨωɺख΍ଞͷϑΝΫλʹΑ્ͬͯ· ΕΔͱ۠ผͰ͖ͳ͍ Automatic Acquisition of High-fidelity Facial Performances Using Monocular Videos ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ˌ'5."̍̔
  23. 
 ਓؒͷಈ࡞ͷ̐%ʢ̏%QMVT࣌ؒʣεΩϟχϯά σʔληοτͷ࡞੒ɹ IUUQEGBVTUJTUVFNQHEF͜͜Ͱ࢖͑ΔΑ ୹ڑ཭Ϩϯδͱ௕ڑ཭Ϩϯδͷ૊Έ߹Θͤ ςΫενϟ৘ใΛར༻ͯ͠δΦϝτϦϕʔεͷख ๏Λ֦ு γϯϓϧ͔ͭਖ਼͔֬ͭϙʔλϒϧ ࣮෺ͷεΩϟϯͱͦͷ಺෦ͷਅ࣮Λಉ࣌ʹఏڙ͢ Δσʔληοτ͸͜Ε͕ॳ

    ද໘͔ΒNNҎ্ͷزԿֶతͳΤϥʔ ٬؍తͳ ຊ෺ͱൺֱͨ࣌͠ͷΠϝʔδͷΤϥʔ ಈ͖ͷҰ கੑΛఆྔධՁͱͯ͠ϥϕϧ෇͚ Dynamic FAUST: Registering Human Bodies in Motion ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ˌ'5."̍̔ $713`
  24. ֤ҥ෰Λࣗಈతʹ෼ׂ͠ɺ਎ମͷ࠷௿ݶͷϞσϧ Λੜ੒͠ɺ࣌ؒܦա͝ͱͷ෰ͷมܗΛ௥੻ ಈ͘༸෰ͷߴղ૾౓̏%εΩϟϯ ෰ͷγϡϛϨʔγϣϯ͔Βҥ෰ͷऔΓࠐΈ΁ߟ͑ Λγϑτ̏%εΩϟϯʹద߹͢Δ৽نͷϚϧνϝο γϡදݱΛಋೖҥ෰ͷηάϝϯςʔγϣϯ ҥྨͷηάϝϯςʔγϣϯͱϞσϧͷମܕʹয఺ Λ౰ͯͨλʔήοτมߋˠԾ૷ࢼண͕Մೳ ଟ༷ͳҥ෰ͷ෼ੳɺλʔήοτมߋɺମܕมߋɺ Ωϟϓνϟͨ͠υϨεͷσʔληοτΛར༻ɺҰ

    ຕͷը૾͔Βҥ෰Λੜ੒ɹҎ্Λ࣮ߦͨ͠ Ϙλϯ΍ۗͳͲʹಛ௃͕͋Δෳࡶͳҥ෰ɺεΧʔ τ΍ωΫλΠͳͲମͷಈ͖ͱඞͣ͠΋Ұக͠ͳ͍ ΋ͷɺମͱ෦෼తʹ͔͠઀͠ͳ͍෰ͳͲ՝୊ ClothCap: Seamless 4D Clothing Capture and Retargeting ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ˌ'5."̍̔ 4*((3"1)
  25. 
 The Noh mask effect: vertical viewpoint dependence of facial

    expression ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ೳͷ఻౷ʹख़ୡͨ͠ആ༏͕૷ண͢ΔϑϧϑΣΠε ϚεΫ͸಄ͷಈ͖͕มԽ͢Δͱ༷ʑͳදݱޮՌΛ ༠ൃ͢Δ͜ͱ͕ग़དྷΔ ೔ຊͱΠΪϦεͷࢹௌऀʹରͯ͠ϢʔβʔελσΟ Λߦ͍͜ͷޮՌΛݕূͨ͠ ϢʔβʔελσΟͷ݁Ռ͔Β͜ͷޮՌ͸จԽʹΑͬ ͯௐ੔͞Ε͍ͯΔ͜ͱ͕Θ͔ͬͨ ϨʔβʔͰͷղੳʹจԽతͳҙຯ͸ͳ͍ ҟͳΔจԽʹଐ͢Δूஂʹରͯ͠ௐࠪΛߦͬͨ ̏%ϨʔβʔεΩϟϯΛ༻͍ͯೳ໘ͷ಺෦ͷද৘ Λղੳ͠෼ੳʹ໾ཱͯΑ͏ͱͨ͠ '5."
  26. 
 ୯Ұͷ3(#ΧϝϥΛ༻͍ͯਓؒͷ׬શͳ̏%ࠎ֨ ϙʔζΛϦΞϧλΠϜʹΩϟϓνϟʔ͢Δ $//ʹجͮ̎͘%ͱ̏%ͷؔઅҐஔͷճؼͱӡಈ ֶతεέϧτϯϑΥονϯάΛ૊Έ߹ΘͤΔ ௿඼࣭ͳ3(#ΧϝϥͰ΋͓L Χϝϥͷੑೳͱܭࢉ࣌ؒͷ௕͞ͱ͍͏ೋͭͷ໰୊ ʹޮՌ ࠷ઌ୺ͷΦϑϥΠϯͷ3(#ΧϝϥΛ༻͍ͨख๏ ͱൺֱͨ͠

    73ͱ͔ίϯϐϡʔλʔήʔϜͷΠϯλϥΫγϣ ϯͱ͔ʹ࢖͑Δ ̎%δϣΠϯτ͸ζϨ͕ੜ͡Δ͜ͱ͋Γ໰୊ VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5." 4*((3"1)`
  27. 
 ୯؟3(#ΧϝϥͷΈͷγʔέϯεʹجͮ͘ϦΞ ϧλΠϜ̏%ϋϯυτϥοΩϯά DZDMF("/Λ༻͍ͯ߹੒ը૾Λม׵࣮ͯ͠ࡍͷख ը૾ʹԊ͏౷ܭ෼෍Λ༗͢Δʮ࣮ʯը૾Λੜ੒͠ SFHOFUͷ܇࿅ʹ࢖༻ ϋϯυτϥοΩϯάʹ͓͍ͯ3(#ͷख๏Ͱݱࡏ ͷ࠷ઌ୺ख๏Λ্ճΔύϑΥʔϚϯεΛൃش ݱࡏͷ࠷ઌ୺ख๏ͱͷग़ྗ݁Ռൺֱ 3FH/FU͕ྑ͍༧ଌΛಘΔͨΊʹۤ࿑͢Δͱτϥο

    Ωϯά͕ෆ҆ఆʹͳΔ͕ηάϝϯλಋೖͰରॲՄ ෳ਺ͷख͕઀͍ۙͯ͠ΔͱηάϝϯτෆՄ৴པ GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5."
  28. ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ػցֶशϕʔεͷιϑτηάϝϯςʔγϣϯʹΑͬ ͯݱࡏΞʔςΟετʹґଘ͍ͯ͠Δը૾ฤूʹ͓ ͚Δબ୒ͱ߹੒Λߦ͏ ͖ͪΜͱฤूʹ໾ཱͭΑ͏ͳҙຯͷ͋ΔڥքΛੜ

    ੒͢Δ͜ͱ͕Ͱ͖Δ σΟʔϓχϡʔϥϧωοτϫʔΫ͔Βͷߴ͍Ϩϕ ϧͷ৘ใΛೖྗը૾ͷϩʔΧϧͳςΫενϟʔ৘ ใͱ༥߹ͤ͞Δ ࣮ࡍʹݘͷը૾Λฤूͯ͠എܠΛม͑ͯΈͨ ਖ਼֬ͳιϑτηάϝϯςʔγϣϯΛߦ͏͜ͱ͕Ͱ ͖Δ͕଎౓͕஗͍ɹ Semantic Soft Segmentation Siggraph’18 'UNB
  29. ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ χϡʔϥϧωοτΛ༻͍ͯը૾ͷަࠩ఺ͷಛ௃ྔ Λղੳͯ͠ը૾ؒͷରԠؔ܎Λݕग़Ԡ༻͢Δͱ ΩϚΠϥͷը૾ͱ͔࡞ΕΔ ͋Β͔͡Ί܇࿅͞Εͨ෼ྨωοτϫʔΫʹΑΔ

    σΟʔϓಛ௃Ϛοϓʹجͮ͘ ֤ϨϕϧͰݕࡧྖҬΛߜΓࠐΈ ਓؒʹΑΔରԠؔ܎ݕग़ͱඇৗʹ͍ۙಈ࡞͕Ͱ͖ Δ ୅ସݚڀͱͷൺֱͱϢʔβʔελσΟ ෼ྨҎ֎ͷλεΫͷͨΊʹ܇࿅͞Εͨωοτϫʔ ΫͰͷ࣮૷΋ߦ͍͍ͨ Neural Best-Buddies: Sparse Cross- Domain Correspondence Siggraph’18 'UNB
  30. ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ΦϑϥΠϯͷ೾ܗσʔλΛར༻ͨ͠ίϯϐϡʔλʔ ΞχϝʔγϣϯͷͨΊͷԻ੠߹੒ ΞίʔεςΟοΫͳԻڹάϦουΛ࢖༻ େن໛ͳΠϯλʔϑΣʔεΛ࢖༻

    ෳࡶͳݱ৅ʹରͯ͠ԻΛ߹੒Ͱ͖ਫͷԻͱ͔៉ྷ ʹදݱͰ͖Δ ΋ͷ͍͢͝୔ࢁΤϑΣΫτ͕͔͚ΒΕΔ ઌߦݚڀͱ͜ͷख๏Ͱಉ͡΋ͷΛग़ྗͯ݁͠ՌΛ ൺֱ ஗͍ͱ͍͏࠷େͷ໰୊͕͋Δ Toward Wave-based Sound Synthesis for Computer Animation
  31. ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ༷ʑͳΩϟϥΫλʔʹॴ๬ͷಈ࡞ΛߦΘͤΔֶश ϕʔεͷΩϟϥΫλʔΞχϝʔγϣϯ ϞʔΩϟϓͰࡱͬͨεϐϯͱ͔ߴ౓ͳಈ͖ग़དྷΔ ΞʔςΟετ΍ϞʔγϣϯΩϟϓνϟͷആ༏͕ج

    ४ಈ࡞ͷσʔληοτΛఏڙɺ͔ͦ͜Βݱ࣮తͳ ಈ࡞Λੜ੒ ֶशϕʔεͰࣗવͳಈ͖Λ࣮ݱෳ਺ͷΫϦοϓ Λ౷߹ͯ͠ෳ਺ͷεΩϧΛ࣮ߦͰ͖Δ ͍ΖΜͳΩϟϥͰಈ͔ͤΔ ׬શͳख๏ͱҰ෦ͷίϯϙʔωϯτΛແޮʹ͢Δ ୅ସ͑ͷτϨʔχϯάεΩʔϜΛ༻͍ͯ݁ՌΛൺ ֱ Ґ૬ม਺Λج४ಈ࡞ͱಉظͤ͞Δඞཁ͕͋ΔͷͰ ಈ࡞ͷλΠϛϯάΛௐ੔͢Δೳྗ੍͕ݶ ֶशʹ͕͔͔࣌ؒΔ DeepMimic: Example-Guided Deep Reinforcement Learning of Physics- Based Character Skills Siggraph’18 'UNB
  32. ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ωϟϓνϟʔͨ͠ಈ͖Λίϯτϩʔϧ͢ΔͨΊͷ χϡʔϥϧωοτϫʔΫ ಈ͖Λ༧ଌ͢ΔωοτϫʔΫͱήʔςΟϯάωο τϫʔΫΛ߹Θͤͨ΋ͷ

    ϞʔγϣϯΩϟϓνϟͷσʔλΛ༻͍ͨFOEUP FOEͷػցֶशಈ͖༧ଌͷωοτϫʔΫͱήʔ ςΟϯάωοτϫʔΫΛ߹Θͤͨ ಈ͖͕ਖ਼֬ ಛʹޙΖ଍ͷಈ͖͕ࣗવ Ϟʔγϣϯ੍ޚͷػೳΛ࣋ͭଞͷϑϨʔϜϫʔΫ ͱग़ྗ݁ՌΛൺֱ ·ͨॏΈ෇͚ͷมԽΛه࿥ͨ͠ σʔληοτͷಛ௃্؆୯ͳಈ࡞Λ߹੒͢Δͷʹ ͸޲͍͍ͯΔ͕ശ͔Βඈͼ߱ΓΔͳͲͷμΠφϛο Ϋͳಈ࡞ʹ͸޲͔ͳ͍ Mode-Adaptive Neural Networks for Quadruped Motion Control
  33. 
 GhostID:Enabling Non- PersistentUser Differentiation in Frequency2Division Capacitive ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ

    ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ৴߸ΰʔετΛղੳͯ͠ಉ࣌ʹը໘ʹ৮Ε͍ͨΔ ࢦͷॴ༗ઌΛ۠ผͰ͖Δ प೾਺ଟॏ෼ׂʹΑͬͯ༰ྔΛଌఆ ֎෦ͷϋʔυ΢ΣΞʹґଘͤͣηϯαࣗମ͕λο νΛ۠ผͰ͖Δ ҰਓͷϢʔβʔೋຊͷࢦɺਓ̎ຊɺਓ̏ຊɺ ਓ̏ຊͰ࣮ݧͯ͠ߴ͍ਖ਼֬ੑΛಘͨ ֎෦ϋʔυ΢ΣΞʹґଘ͠ͳ͍ͱΰʔετ৘ใͩ ͚Ͱ͸ϢʔβʔΛ۠ผׂͯ͠Γग़͢ͱ͜Ζ·Ͱ͸ ແཧ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5."̍̔ 6*45
  34. 
 ༷ʑͳ෺ମ΁ͷλονೖྗΛՄೳʹ͢Δ௿ίετ ͳݕग़ٕज़ ҆Ձͳಋిੑࡐྉͱڠௐͯ͠ిքτϞάϥϑΟʔ Λ࢖༻ େ͖ͯ͘ෆنଇͳ΋ͷʹ΋ద༻Մೳ ༰қ͔ͭ҆Ձ ໊ͷࢀՃऀΛू͍ిۃ਺ɺࡐྉɺද໘ܗঢ়ͳ ͲͷཁૉΛมߋͯ͠ηϯγϯάٕज़ͱ௥੻ٕज़ͷ ςετΛߦͬͨ

    Electrick: Low-Cost Touch Sensing Using Electric Field Tomography ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ؀ڥཁҼʹΑΔి࣓ϊΠζ͕τϥοΩϯάͷੑೳ ʹӨڹ ͋·Γখ͍͞ͱిྲྀͷྔ͕খ͘͞ͳΓ࣭௿Լ '5."̍̔ 6*45
  35. 
 ࢦʹऔΓ෇͚ͨ਒ಈηϯαͱεΫϦʔϯԠ౴Λݕ ग़͢ΔͨΊͷϑΥτμΠΦʔυΛ࢖ͬͯϨΠςϯ γΛଌఆٴͼఏࣔ ࢦͱը໘ʹ૷උ͢Δϋʔυ΢ΣΞΛ࢖༻ ιϑτ΢ΣΞͱ૊Έ߹ΘͤΔ ܇࿅͕͍Βͳ͍ 8JOEPXTͱɹ.BDPTYͱɹVCVOUVͷ༗໊ͳ ϗετίϯϐϡʔλ̏ͭͰಈ࡞ͤͨ͞ ϔϧπ਺΍ݴޠͳͲ΋ҡ͍࣋ͯӨڹΛݕূͨ͠

    ଞͷख๏ͱ૊Έ߹ΘͤΔ͜ͱͰγφδʔΛੜΉ Characterizing Latency
 in Touch and Button-Equipped Interactive Systems ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5."̍̔ 6*45
  36. 
 ݱࡏΞʔςΟετ͕ߦͳ͍ͬͯΔΞχϝʔγϣϯ ΁ͷೋ࣍తͳϞʔγϣϯ௥ՃΛΠϥετͷΩϟϥ Ϋλͷಈ͖Λ఻೻͢Δ͜ͱʹΑͬͯߦ͏ ಈ͔͢ͷ͕؆୯ ϢʔβʔελσΟΛߦ͍ັྗతͳೋ࣍తΞχϝʔ γϣϯΛ࡞੒͢Δͷʹ໾ཱͭ͜ͱΛࣔͨ͠ ҟͳΔϙʔζ·ͨ͸ϙδγϣϯʹ͋ΔΩϟϥΫλʔ Λೋ࣍ͳΞχϝʔγϣϯʹऔΓࠐΉʹ͸·ͩݚڀ ͕ඞཁ

    Secondary Motion for Performed 2D Animation ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ 6*45 '5."̍̔ ΩϟϥΫλͷҟͳΔύʔπؒͰࣗಈతʹϞʔγϣ ϯΛ఻೻͢ΔϦάͷηοτΛఆٛ
  37. 
 Interactive Sound Rendering on Mobile Devices using Ray-Parameterized Reverberation

    Filters '5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ಈతͳγʔϯʹରͯ͠ଥ౰ͳα΢ϯυΛੜ੒͢Δ ͜ͱͷͰ͖Δ৽ͨͳα΢ϯυϨϯμϦϯάύΠϓ ϥΠϯ73ɺ"3ͷݱ࣮ײΛߴΊΔͷͱ͔ʹ࢖͑ Δ ৞ΈࠐΈϕʔεͰ͸ͳ͘ਓ޻తͳۭؒ࢒ڹΛϕʔ εʹ͍ͯ͠Δ εϚϗʹಈతͳԻ੠఻೻ޮՌΛ༩͑Δ͜ͱͷͰ͖ Δ࠷ॳͷΞϓϩʔν ৞ΈࠐΈϕʔεͷϨϯμϦϯάΑΓ΋ૣ͍ ఻౷తͳख๏ͱ͜ͷख๏ͷͦΕͧΕʹ͍ͭͯσε ΫτοϓͰͷಈ࡞Λൺֱͨ͠ ͔͔Δ࣌ؒతίετ͕ѹ౗తʹগͳ͍ ৞ΈࠐΈϕʔεͰ͸ͳ͘ਓ޻తͳ࢒ڹΛར༻ͯ͠ ͍ΔͨΊʹϔϧπ਺͕௿͍෦෼ʹରͯ͠ύϑΥʔ Ϛϯεͷࡉ΍͔͞ͱӶ͕͞଍Γͳ͍ 8BWFOFU΋͏গͪ͠ΌΜͱಡΈࠐΈ͍ͨͱࢥͬ ͨ CARL SCHISSLER, DINESH MANOCHA, University of North Carolina at Chapel Hill
  38. 
 SweepCanvas:
 Sketch-based 3D Prototyping on an RGB-D Image ͲΜͳ΋ͷʁ

    ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ΤϯυϢʔβʔʹͱͬͯΠϯλϥΫςΟϒͳεέο νϕʔεͷ̏%ϞσϦϯάπʔϧ 3(#%৘ใΛ׆༻ͯ͠ฏ໘ղੳ৘ใ͔ΒϢʔβʔ ͷඳ͍ͨετϩʔΫΛ̏%ʹݻఆ.3'ϕʔεͷ ࠷దԽʹΑΓ̎ͭͷετϩʔΫ͔Βਝ଎ʹ̏%ϓ ϨʔϯΛੜ੒ ໘౗ͳઐ໳ٕज़Λඞཁͱͤͣ௚ײతͰΤϯυϢʔ βʔʹͱͬͯ࢖͍΍͍͢ ਓͷϢʔβʔʹଞͷ̐ͭͷख๏΋ؚΊͯϞσϦ ϯάΛߦͬͯ΋Β͍݁Ռͱ͔͔ͬͨ࣌ؒΛൺֱ ࠓޙ͸༷ʑͳϝσΟΞʹରͯ͠ࢼ͍ͨ͠ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ 6*45 '5."̍̔
  39. 
 ୯؟ΧϝϥΛ༻͍ͨඃࣸମʹϐϯτ͕߹͍ͬͯΔ Α͏ʹݟ͑Δൣғ͕޿͍ϦΞϧλΠϜτϥοΩϯ άٕज़ ϚʔΧʔʹΑΔ௥੻͚ͩͰ͸ਫ਼౓͕௿͍ͷͰϑϨʔ ϜؒΞϥΠϝϯτͱߴີ౓ϙʔζϦϑΝΠϯϝϯ τΛ૊Έ߹ΘͤΔ ༰қʹೖखՄೳͰ૊Έཱͯ΍͍͢෦඼Λ༻͍͍ͯ Δ ෳ਺ͷΧϝϥΛ༻ҙ͠ͳ͓ͯ͘L

    %ͷ͓ֆ͔͖ʹ΋̏%ͷ͓ֆ͔͖ʹ΋Ԡ༻Ͱ͖ Δ DodecaPen: Accurate 6DoF Tracking of a Passive Stylus ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ 6*45 '5."̍̔ ߹੒σʔληοτͱ࣮σʔληοτͷ྆ํΛ༻͍ ͍ͯτϥοΩϯάΛσεΫτοϓͰಈ࡞ͤ͞ PQUJUSBDLϞʔγϣϯΩϟϓνϟγεςϜͱൺֱ
  40. 
 Ϣʔβʔ͕›ϏσΦͷதʹ͋Δॏཁͳίϯς ϯπશͯΛଊ͑ΒΕΔΑ͏ʹΧοτ͝ͱʹࢹքΛ ௐ੔͢ΔϘλϯͰௐ੔Մ ϏσΦͷதʹ͋ΔॏཁͳίϯςϯπͷҐஔΛࣔ͢ ϥϕϧΛ࡞੒ ॏཁͳίϯςϯπ͸ෳ਺͋Δ͜ͱ͕ଟ͍͕ͦΕΛ શͯԣஅͰ͖ΔΞϓϩʔν ̐ͭͷ৽͍͠ϏσΦΛؚΉ̍̍ͷϏσΦʹ͍ͭͯɺ γϣοτௐ੔Λߦ͏ͨΊʹඞཁͳγϣοτڥքͷ

    ൑ผΛ֬ೝ ݱ࣌఺Ͱ͸γϣοτͷํ޲͔͠ߟྀ͍ͯ͠ͳ͍͕ ଞͷ͜ͱʹ͍ͭͯ΋΍Γ͍ͨ ޲͍ͯΔ͚࣌ͩίϯςϯπ͕࠶ੜ͞ΕͨΓͱ͔ Shot Orientation Controls for Interactive Cinematography with 360o Video ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5."̍̔
  41. ›ը૾Ͱࢹքͷ֎ʹ͋Δؔ৺౓ͷߴ͍ίϯς ϯπΛQJDUVSFJOQJDUVSFͰදࣔ 1*1ͷҐஔٴͼ޲͖Λ30*ʢSFHJPOPG JOUFSFTUJOHʣͷํ޲Λࣔͨ͢Ίʹར༻ ਂ౓ܭଌ 30*ΛGˇը໘͍දࣔͤ͞ΔͨΊͷ࠷খԽ͞Εͨ Ξϓϩʔν 1JDUVSFJOQJDUVSFͷ͋Δͳ͠ͰϢʔβʔελσΟ ͠ɺϢʔβʔͷ৘ใड༰౓Λௐࠪ ϏσΦͷෳࡶੑ͕ͱͯ΋্͕Δͱ͋Μ·ΓޮՌͳ

    ͘ͳΔ Outside-In: Visualizing Out-of-Sight Regions-of-Interest in a 360 Video Using Spatial Picture-in-Picture Previews ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ '5."̍̔ 6*45
  42. DeepHolo: Recognizing 3D Objects using a Binary-weighted Computer-Generated Hologram Naoya

    Muramatsu University of Tsukuba Pixie Dust Technologies, Inc. [email protected] Chun Wei Ooi University of Tsukuba [email protected] Yoichi Ochiai University of Tsukuba Pixie Dust Technologies, Inc. [email protected] Yuta Itoh University of Tsukuba [email protected] ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ϙΠϯτΫϥ΢υϞσϧ͔Β࠶ߏ੒͞Εͨίϯ ϐϡʔλʔੜ੒ϗϩάϥϜΛѻ͏%//̏%఺܈ ϑΥʔϜΛ̎%σʔλͱͯ͠ॲཧͰ͖Δ %ϐΫηϧΫϥ΢υϞσϧΛ̎%ϗϩάϥϜσʔ λʹม׵͢Δ$()ϓϩάϥϜͷ࣮૷ ಛ௃Λऔಘ͢ΔύϥϝʔλʔΛऔΓ෷͏͜ͱ͕Ͱ ͖ΔͨΊؔ࿈ݚڀͷൺ΂ͯωοτϫʔΫ಺ʹ͓͍ ͯ͸Δ͔ʹεϖʔεޮ཰͕ྑ͍ ͍͔ͭ͘ͷ%//ͱೝࣝ݁ՌΛൺֱ ମੵଌఆɺଟࢹ఺ɺϐΫηϧΫϥ΢υϞσϧʹ͓ ͚Δ୅දతͳηοτͱൺֱ $()͕ϑϧ)%ͰͰ͔͍ ϗϩάϥϜαΠζΛѹॖͨ͠      '5."
  43. 
 Convolutional neural network-based regression for depth prediction in digital

    holography '5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Tomoyoshi Shimobaba Graduate School of Engineering Chiba University1-33 Yayoi-cho, Inage-ku, Chiba, Japan [email protected] Takashi Kakue Graduate School of Engineering Chiba University1-33 Yayoi-cho, Inage-ku, Chiba, Japan [email protected] Tomoyoshi Ito Graduate School of Engineering Chiba University
 1-33 Yayoi-cho, Inage-ku, Chiba, Japan [email protected] ิ଍͞ΕͨϗϩάϥϜ͔Β̏࣍ݩۭؒ಺ͷ෺ମΛ ࠶ߏ੒͢ΔσδλϧϑΥτάϥϑΟʹඞཁͳਂ౓ Ґஔͷ༧ଌΛ$//ϕʔεͷճؼΛ༻͍ͯߦ͏ ϗϩάϥϜσʔληοτͰ͸ͳ͘εϖΫτϧσʔ ληοτΛ༻͍Δ ϛϦ୯ҐͰଌΕΔ ෼ྨ໰୊Ͱ͸ͳ͘ॏճؼ໰୊Λղ͘ͷͰ༧ଌਂ౓ ͕཭ࢄ஋Ͱ͸ͳ͘࿈ଓ஋ͱͳΔ ϗϩάϥϜσʔληοτΛ༻͍ͨͱ͜Ζ༧ଌਂ౓ ฏۉޡࠩ͸NN͕ͩͬͨεϖΫτϧσʔληο τΛ༻͍ΔͱNNͩͬͨ ͜Ε͔Β͸ҟͳΔҐஔʹ͋Δෳ਺ͷର৅෺ͷਂ౓ Λܭଌ͢Δ༧ఆ
  44. A Novel Hybrid Biometric Electronic Voting System: Integrating Finger Print

    SYED SHAHRAM NAJAM*, AAMIR ZEB SHAIKH*, AND SHABBAR NAQVI** ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ৽ͨͳ౤ථγεςϜͷ࣮૷ͷͨΊͷ̎ͭͷ౤ථऀ ݕग़ٕज़ɹநग़ͨ͠ಛ௃ϕΫτϧΛσʔλϕʔε ʹొ࿥ͯ͋͠ΔόΠΦσʔλͱൺֱ ࢦ໲ೝূͱإೝূͷೋͭ૊Έ߹ΘͤΔ͜ͱͰਖ਼ղ ཰ΛΧόʔ ࣮ࡍʹൃల్্ࠃͷ౤ථγεςϜʹԠ༻Ͱ͖ͦ͏ ͦΕͧΕʹ͍ͭͯݕূ࣮ݧͨ͠ͱ͜Ζਖ਼ղ཰͕Ͳ ͪΒ΋Λ௒͑ͨ ҉߸ԽΞϧΰϦζϜΛಋೖͯ͠ηΩϡϦςΟΛ૊ Έࠐ·ͳ͍ͱ͍͚ͳ͍ '5."
  45. 
 Joint Material and Illumination Estimation from Photo Sets in

    the Wild Tuanfeng Y. Wang Tobias Ritschel Niloy J. Mitra University College London, UK '5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ωοτ্ͷը૾Λར༻ͨ̎͠%Πϝʔδը૾ͷর ໌ɺܗঢ়ɺࡐྉͷૢ࡞ɹ൓ࣹͷ࠷దԽ Ԡ༻ͯ͠ը໘ʹ৽͘͠ҜࢠΛग़ͤͨΓ͢Δ ಉ͡র໌ͷԼʹ͋Δ༷ʑͳૉࡐͷը૾ͱҧ͏র໌ ͷԼʹ͋Δಉ͡ૉࡐͷը૾Λ࢖༻߹੒ը૾Ͱ܇ ࿅͞ΕͨχϡʔϥϧωοτϫʔΫͷ࠷దԽ ωοτͷը૾Λ࢖༻͍ͯ͠Δ ಉ༷ͷख๏ͱϢʔβʔελσΟͰຬ଍౓Λൺֱ͠ ͨ ޿͍෦԰ͷը૾࢖͏ͱޡ͕ࠩग़΍͍͢ ೖྗଌఆ஋ͷαϯϓϧ਺͕ݶΒΕ͍ͯΔͱর໌ͷ ݟੵ΋Γࣗମ͕ෆࣗવʹݟ͑Δ͜ͱ͕͋Δɹɹɹɹɹ ΦϒδΣΫτ͕ۙ͗͢ΔͱมͳӨ͕ग़Δ
  46. Leaked Light Field from Everyday Material: Designing Material Property Remained

    Light-field Display Kazuki Takazawa1∗ Kenta Suzuki1 Shinji Sakamoto1 Ryuichiro Sasaki 2 Yoshikuni Hashimoto2 Yoichi Ochiai1 ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ੴɺ໦ࡐɺڸͳͲͷෆಁ໌ࡐྉΛදࣔ໘ͱͯ͠࢖ ༻Ͱ͖ΔΑ͏ʹ͢Δ ςΩετΛೖྗ͍ͯͩ͘͠͞ ςΩετΛೖྗ͍ͯͩ͘͠͞ ςΩετΛೖྗ͍ͯͩ͘͠͞ ςΩετΛೖྗ͍ͯͩ͘͠͞ ਓؒͷ໨ʹ͸ݟ͑ͳ͍ЖNͷϐϯϗʔϧΛ࢖ ༻͠ϐϯϗʔϧσΟεϓϨΠΛ࣮૷ '5."
  47. Materialization of Motions: Tangible Representation of Dance Movements for Learning

    and Archiving Mose Sakashita University of Tsukuba [email protected] Kenta Suzuki University of Tsukuba [email protected] Keisuke Kawahara University of Tsukuba [email protected] Kazuki Takazawa University of Tsukuba [email protected] Yoichi Ochiai University of Tsukuba [email protected] ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ μϯεͷಈ͖ΛΧϝϥΛ༻͍ͯ̏%తʹΩϟϓνϟ ͠Ұఆͷςϯϙ͝ͱʹਓؒͷಈ͖Λ༗ܗͷਓܗΛ ༻͍ͯදݱɹμϯεͷֶशʹ໾ཱͯΔ ΩωΫτΧϝϥΛ࢖֤ͬͯؔઅͷYɺZɺ[ࡾ࣍ݩ ۭؒతҐஔΛऔಘ ̏%ϓϦϯλʔͷग़ྗΛਓؒͷಈ͖Λ٬؍తʹଊ ͑Δ͜ͱʹར༻ֶ͠शʹ໾ཱͯͨ ಈ͖ͱςϯϙͷؔ܎ੑΛར༻ ࣮ࡍʹग़ྗͯ͠ΈͨΒͰ͖ͨ ʢϙελʔ͔͠ݟ͔ͭΒͳ͔͔ͬͨΒ͜͜Α͘Θ ͔Β͵ɺɺʣ '5." 4*((3"1) μϯεͷಈ͖͸ෳࡶ͔ͩΒԻָͷςϯϙͱಈ͖ͷ ৼΓ෇͚ͷؔ܎ੑΛར༻ͨ͠ 3D skeleton-based human action classification: A survey ͳΜ͚ͩͲ༗ྉͰಡΊͳ͍ɺͭΒ͍
  48. 
 Dual Deep Network for Visual Tracking Zhizhen Chi, Hongyang

    Li, Student Member, IEEE, Huchuan Lu, Senior Member, IEEE, and Ming-Hsuan Yang, Senior Member, IEEE '5." ͲΜͳ΋ͷʁ ಉ͡ߏ଄Λ࣋ͪผͷॏΈ෇͚Ͱ܇࿅͞Εͨೋͭͷ ωοτϫʔΫΛ༻͍ͯϰΟδϡΞϧτϥοΩϯά ʹ͓͍ͯλʔήοτͱͳΔΦϒδΣΫτΛΑΓ໌ ֬ʹ൑ผ͢Δ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ύονΛ࢖ͬͯτϨʔχϯάσʔλΛ૿ڧֶͯ͠ शΛޮ཰Խɹ ϩʔɾϋΠΛ୲͏̎ͭͷωοτϫʔΫʹΑΔηϧ ϑڭࢣ෇ֶ͖श ᐆດͳڥք΍എܠ͔ΒλʔήοτͱͳΔΦϒδΣ ΫτΛΑΓ໌֬ʹ۠ผͰ͖ΔΑ͏ʹͳͬͨ ࣮ࡍʹಈ࡞ͤ͞ఆྔධՁΛେྔʹߦͬͨ $//͸ࣄલͷ܇࿅ʹґଘ͍ͯͨ͠Γɺλʔήο τͷςΫενϟΛͪΌΜͱೝ͍ࣝͯ͠ͳ͔ͬͨΓɺ पΓͷࣅ͍ͯΔ΋ͷͱ۠ผͰ͖ͳ͔ͬͨΓ͢Δɻ ͜ΕΛղܾ͔ͨͬͨ͠ ͏ʔΜ
  49. 
 Deep Learning for Action Recognition in Augmented Reality Assistance

    Systems Matthias Schro ̈der Neuroinformatics Group, Bielefeld University [email protected] Helge Ritter Neuroinformatics Group, Bielefeld University [email protected] ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ "3ϔουϚ΢ϯτσΟεϓϨΠͷ։ൃͷͨΊʹ Ϣʔβʔͷߦಈ͔Βநग़ͨ͠σʔληοτΛσΟʔ ϓʹಥͬࠐΈϑΟʔυόοΫ͢Δ େن໛ͳσʔλϕʔεͷߏஙʹՃ͑ͯϞόΠϧԽ ͍ͨ͠ͷͰ$//ΛαΠζͱޮ཰ʹ͓͍ͯ࠷దԽ ͍ͨ͠ ࣮ࡍʹಈ࡞ͤͨ͞Βจ຺ґଘͷϑΟʔυόοΫ͕ ༗ޮͰ͋Δ͜ͱΛଟ͘ͷݚڀऀ͕ೝΊͨ ϩʔΧϧͳର৅ೝ͔ࣝΒͷτϥοΩϯάͱάϩʔ όϧͳจ຺ґଘͰͲ͏΍ͬͨΒ͏·͘ಈ࡞͢Δ͔ ͷϑΟʔυόοΫΛ૊Έ߹ΘͤΔ ϢʔβʔͷΞΫγϣϯ͔ΒϑΟʔυόοΫ͢Δͱ ͍͏Ξϓϩʔνํ๏ Deep Appearance Maps ʢ2018ʣͱ͔ '5."
  50. 
 ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Deep Appearance Maps Maxim Maximov 1 , Tobias

    Ritschel 2 , Mario Fritz 11 Max Planck Institute for Informatics, Saarland Informatics Campus 2 University College London ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ '5." ൓ࣹ཰΍র໌ύϥϝʔλΛநग़͢ΔͷͰ͸ͳ͘֎ ؍Λ௚઀දݱ͢ΔσΟʔϓχϡʔϥϧωοτϫʔ ΫͰॊೈʹ֎؍Λදݱ͍ͨ͠ ϐΫηϧϕʔεͷϨϯμϦϯάɺ࠶ߏ੒Λ࢖༻͠ ͳ͍͜ͱʹΑͬͯૉࡐΛॊೈʹදݱ͢Δ͜ͱ͕Ͱ ͖Δ ֎؍ͦͷ΋ͷΛදݱ͍ͯ͠ΔͷͰૉࡐʹؔͯ͠׮ ༰ ϚςϦΞϧΛॏࢹ ؔ࿈ݚڀͰ࢖༻ͨ͠ωοτϫʔΫͱग़ྗ݁ՌΛൺ ֱ ϋΠϥΠτͳͲ͕େ͖͘ग़ͣࣗવͩͬͨ র໌ͱ൓ࣹͷಠ੍ཱͨ͠ޚΛՄೳʹͯ͠ ΑΓྑ͍ૉࡐͷฤूʹ໾ཱ͍ͯͨ ܇࿅͞ΕͨΞʔςΟετͷΑ͏ʹ৽͍͠ૉࡐΛ࢖ͬ ͨΒͲ͏ͳΔ͔Θ͔ΔΑ͏ʹ͍ͨ͠ Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines 
 that learn and think like people. Behavioral and Brain Sci. 40 (2017) 

  51. WAVENET: A GENERATIVE MODEL FOR RAW AUDIO Aa ̈ron van

    den Oord Karen Simonyan Nal Kalchbrenner Sander Dieleman Oriol Vinyals Andrew Senior Heiga Zen† Alex Graves Koray Kavukcuoglu '5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ੜͷ೾ܗΛੜ੒͢ΔͨΊͷσΟʔϓχϡʔϥϧωο τϫʔΫɹҟͳΔ੠ͷಛ௃ྔΛಉ౳ͷ஧࣮౓Ͱิ ଍ɺ੾Γସ͑Δ͜ͱ͕Ͱ͖ΔɹࣝผϞσϧʹ΋࢖ ͑Δ ܭࢉྔΛେ෯ʹ૿Ճͤ͞Δ͜ͱͳ͘ɺղ૾౓Λҡ ࣋ͭͭ͠धཁ໺Λ֦ுͤͨ͞ҼՌత৞ΈࠐΈϞσ ϧ ֶशͷૣ͍ҼՌత৞ΈࠐΈͷಛ௃Λੜ͔ͭͭ͠ܭ ࢉྔ͸ޮ཰Խ͞Εͨ··धཁ໺Λ֦ுͨ͠ ςΩετͱͷඥ෇͚ͳ͠ͷԻ੠ੜ੒Ͱݴޠʹ͸ฉ ͑͜ͳ͍΋ͷͷԻ੠͕ੜ੒ग़དྷಛ௃Λଊ͍͑ͯ ͨ554ͰϢʔβʔελσΟͨ͠ఆྔධՁ͢Δ͜ ͱ͕ࠔ೉Ͱ͋Δ͜ͱೝΊͭͭओ؍ධՁͨ͠ ੠ͷಛ௃͚ͩͰͳ͘ݺٵͷλΠϛϯά΍ޱͷಈ͖ ͳͲͷಛ௃ྔ΋ֶश͢Δ͜ͱ͕Θ͔ͬͨ  ͷα΢ϯυͷ࿦จ 4*((3"1)ͱ͔
  52. DeepWear: a Case Study of Collaborative Design between Human and

    Artificial Intelligence ˌ'5." Natsumi Kato* University of Tsukuba Hiroyuki Osone* University of Tsukuba Daitetsu Sato University of Tsukuba Naoya Muramatsu University of Tsukuba Yoichi Ochiai University of Tsukuba University of Tsukuba Hiroyuki Osone* University of Tsukuba Daitetsu Sato University of Tsukuba Naoya Muramatsu University of Tsukuba Yoichi Ochiai University of Tsukuba ͲΜͳ΋ͷʁ %$("/Λ༻ֶ͍ͯशͤͨ͞ϒϥϯυͷ༸෰ͷը ૾σʔλ͔Βಛ௃Λֶश͠෰ͷΠϝʔδΛੜ੒ɺ ύλʔφʔ͕ͦΕΛ΋ͱʹ෰ΛσβΠϯ͢Δਓؒ ͱਓ޻஌ೳͷ༥߹తΫϦΤΠςΟϒ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ "NB[POͷϓϩδΣΫτΈ͍ͨʹػց͚ͩͰ΍Ζ ͏ͱ͢Δͱͩͱ·ͩணΒΕΔ෰ʹͳΒͳ͍ ϚςϦΞϧʢૉࡐʣ΋ಛ௃ͷ࠶ݱʹͱͬͯେ੾ ݩͷ෰ΑΓ๭ϒϥϯυͬΆ͍ͱ͍͏ධՁग़ͨ աڈʹϚʔέοτʹग़ͨ๭ϒϥϯυͷ෰ͱଞͷϒ ϥϯυͷ෰ͱ͜ͷݚڀͰੜ੒ͨ͠෰Λൺ΂ͯͲΕ ͕๭ϒϥϯυͩͱࢥ͏͔ϢʔβʔελσΟ Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. 
 ٕज़΍ख๏ͷΩϞ ("/ͷߏ଄ʹ%//Λద༻ͨ͠%$("/Λ༻͍ͯ ੜ੒ͨ͠෰ͷΠϝʔδը૾ʹج͖ͮύλʔφʔʢਓ ؒʣ͕෰ͷύλʔϯΛੜ੒͢Δ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ਓؒΛੜ੒ͷաఔʹಥͬࠐΉ͜ͱͰ࣮ࡍʹணΒΕ Δ෰Λ࡞ΕΔ ࣍ʹಡΉ΂͖࿦จ͸ʁ େ৿ޭଠ࿠ /*14
  53. UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL
 GENERATIVE ADVERSARIAL NETWORKS ͲΜͳ΋ͷʁ

    $//Λ࢖ͬͨݚڀʹ͓͍ͯ͋·Γ஫໨͞Ε͍ͯ ͳ͍ڭࢣͳֶ͠शΛ༻͍ͨݚڀ ("/ͷߏ଄ʹ%//Λద༻ நग़ͨ͠ಛ௃Λ࢖ͬͯੜ੒Λߦ͏͜ͱ͕Ͱ͖Δ ٕज़΍ख๏ͷΩϞ ࠷ۙൃද͞Εͨ$//ߏ଄ͷมԽܥΛ༻͍Δ͜ͱ ʹΑͬͯ%//ͷ("/΁ͷಋೖΛՄೳʹ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ %//ͷߏ଄Λ༻͍ͯ("/ͷߏ଄ΛΞοϓσʔτ ͢Δ͜ͱʹ੒ޭˠڭࢣͳֶ͠शʹ࢖͑Δ ٞ࿦͸͋Δʁ ·ͩϞσϧͷෆ҆ఆ͕͞࢒ΓɺϞσϧͷ܇࿅͕௕ ͘ͳΔͱϑΟϧλʔͷαϒηοτ͕୯ҰͷৼಈϞʔ υʹ่ΕΔ ΋ͬͱ҆ఆͨ͠ΞʔΩςΫνϟ͕ཉ͍͠ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ܇࿅͞Εͨ%$("/ͱಛ௃நग़ͱը૾ੜ੒Λߦ͏ ྨࣅͷωοτϫʔΫͱͷΤϥʔ஋ͷى͖͞Λൺֱ ࣍ʹಡΉ΂͖࿦จ͸ʁ LAPGAN(Denton et al., 2015) ͔ͳ ˌ'5." େ৿ޭଠ࿠ Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. "SYJW
  54. Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks ˌ'5." ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ

    1JYQJYͱҟͳΓ຋༁લͷը૾ʹରͯ͠ରͱͳΔ ը૾Λ༻ҙ͢Δඞཁͳ͘ม׵͕Մೳ ٕज़΍ख๏ͷΩϞ ("/Λ༻͍ͨը૾ͱը૾ؒͷυϝΠϯม׵ ૊ͷର༁͕੒ཱ͍ͯ͠ͳͯ͘΋ը૾ͷม׵͕Մ ೳ ͲΜͳ΋ͷʁ Jun-Yan Zhu∗ Taesung Park∗ Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 9UP:ͷม׵ͱ:UP9ͷม׵Λ॥؀తʹֶशͤ͞Δɻ EJTDSJNJOBUPSͰͦΕͧΕͷग़ྗը૾͕ੜ੒ઌͱ ͳΔը૾ͱ۠ผ͕͔ͭͳ͍͔Λ൑அ͠ਫ਼౓Λ্͛ ͯߦ͘ QJYQJYͱಉ༷ͷσʔληοτΛ༻͍ͯɺઌߦͷ ("/ͷग़ྗ݁ՌͱͷఆྔൺֱΛߦͬͨ ΫΦϦςΟ͕ߴ͔ͬͨͷͱର༁ͱͳΔը૾ͳ͠ʹ Ϛοϐϯά͕ग़དྷͨ Pix2pix P. Isola, J.-Y. Zhu, T. Zhou, and A. A. 2017 ৭ͱςΫενϟͷม׵͕ಘҙͳͷʹର͠زԿֶతͳม ׵͸ۤखͰഅʹ৐ͬͯΔϓʔνϯ·ͰγϚ΢Ϛฑʹͳͬ ͨΓݘೣΛม׵͠Α͏ͱͯ͠΄΅Կ΋ى͜Βͳ͔ͬͨ Γ͢Δɻ େ৿ޭଠ࿠ "SYJW
  55. Towards the Automatic Anime Characters Creation with Generative Adversarial Networks

    Yanghua Jin School of Computer Science Fudan University [email protected] Jiakai Zhang School of Computer Science Carnegie Mellon University [email protected] Minjun Li School of Computer Science Fudan Univerisity Yingtao Tian Department of Computer Science Stony Brook University Huachun Zhu School of Mathematics Fudan Univerisity [email protected] [email protected] [email protected] Zhihao Fang Department of Architecture Tongji Univerisity [email protected] ˌ'5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ΞχϝΩϟϥͷإը૾σʔληοτʹಛԽͨ͠ ("/ͷ܇࿅ํ๏ͷఏএ ࣗ෼ͷΧελϜΩϟϥΛ࡞Γ͍ͨ ద੾ͳ("/Ϟσϧ͔Βநग़ͨ͠ΫϦʔϯͳσʔ ληοτ ઌߦݚڀ͸ղ૾౓͕௿͔ͬͨΓ΅΍͚Δ ͦΕʹൺ΂ͯΫϦʔϯͳը૾ੜ੒ ղ૾౓͸·ͩ·ͩվળͷ༨஍͋Γ τϨʔχϯάσʔλͷϥϕϧ෼෍͕౳͍͠৔߹ͷ γφϦΦΛߟ͑ෆ҆ఆͰ͋Δ৔߹ͷόΠΞεʹܨ ͛Δ ࣮ࡍʹग़ྗ େ৿ޭଠ࿠ "SYJW
  56. Deep Generative Image Models using a Laplacian Pyramid of Adversarial

    ˌ'5." Emily Denton∗ Dept. of Computer Science Courant Institute New York University Soumith Chintala∗ Arthur Szlam Rob Fergus Facebook AI Research
 New York ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ࣗવը૾ͷߴ඼࣭αϯϓϧΛ࡞੒͢Δ͜ͱͷͰ͖ Δੜ੒Ϟσϧ ը૾ͷߏ଄ΛΑΓଚॏ͢ΔͨΊʹ("/ͷख๏Λ มߋ࣭͠తʹ༏ΕͨαϯϓϧΛੜ੒ ৚݅෇͖("/ϞσϧͷܗࣜΛར༻ ੜ੒͞ΕΔαϯϓϧͷ࣭͕ߴ͍ ࣮ࡍʹग़ྗ͠ϢʔβʔελσΟ Ϛϧνεέʔϧߏ଄͸ଞͷݚڀͷΞϓϩʔνʹԸ ܙΛ༩͑ΔՄೳੑ͕͋Δ େ৿ޭଠ࿠ "SYJW
  57. ˌ'5." େ৿ޭଠ࿠ ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ GANΛར༻ͨ͠௿ղ૾౓ͷը૾͔Βߴղ૾౓ͷ ը૾Λੜ੒͢Δͷੜ੒ωοτϫʔΫ

    ੜ੒ը૾ͱݱ࣮ͱͷဃ཭Λ།Ұͷ࠷దԽର৅ͱ͢ Δ ΑΓਂ͍ωοτϫʔΫΛ࢖༻͢Δ ୯७ʹղ૾౓͕ߴ͍ ޿ൣғͷ.04ςετΛద༻ͨ݁͠Ռ࠷৽ͷؔ࿈ ख๏ʹΑΔ࠶ߏ੒ΑΓ΋ݱ࣮తͳ࠶ߏ੒Ͱ͋ͬͨ ैདྷͷ14/3ʹয఺Λ౰ͯͨը૾௒ղ૾ʹ͸ݶք ͕͋Δ ͪ͜Βͷख๏ͷํ͕ݱ࣮త Photo-Realistic Single Image Super- Resolution Using a Generative Adversarial Network Christian Ledig, Lucas Theis, Ferenc Husza ́r, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi "SYJW
  58. Full 3D Reconstruction of Transparent Objects Bojian Wu, Yang Zhou,

    Yiming Qian, Minglun Gong, Hui Huang ʹΞ͵΍͹ʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ಃ໎͵ΨϔζΥέφ͹3࣏ݫ͹ܙয়ΝࣙಊదͶϠυϩԿͤΖघ๑ɽ 201813559 ஓീ ֋౉ #2 (෻αʖη) ࠹ॵͶΨϔζΥέφ͹୉Ή͖͵ܙয়ΝϠυϩԿͪ͢ϧϓϠυϩΝ ࡠ੔͢ɼΨϔζΥέφͳިࠫͤΖޭત͹ଲԢؖܐΝ༽͏ͱɼϧϓ ϠυϩΝ࠹నԿ͢ͱ͏͚ɽ ϠυϩԿͪ͢΍͹ͳɼࣰࡏ͹ΨϔζΥέφͳ͹න໚͹ړ཯͹ޣࠫ Νܯ଎ͪ͢ɽ SIGGRAPH 2018 ॊཔݜڂͲͺಃ໎͵ΨϔζΥέφ͹2ͯ͹໚͹఼܊Νਫ਼੔ͤΖ͞ͳ ͺड़པͪ͗ɼͨ͹ܙয়ͺ෈׮સͫͮͪɽ͞͹घ๑Ͳͺɼ׮સ͵̑D ϠυϩΝ෰ݫͤΖ͞ͳ͗Ͳ͘Ζɽ ஦ۯ͹ಃ໎͵ΨϔζΥέφͺॴཀྵͲ͘͵͏ɽ ΨϔζΥέφͶଲ͢ͱɼޭત͹۸઄͹յ਼͗ଁ͓Ζͳޣࠫ͗୉͘ ͚͵Ζɽ Qian et al. 3D Reconstruction of Transparent Objects with Position-Normal Consistency. [2016]
  59. MonoPerfCap: Human Performance Capture from Monocular Video WEIPENG XU, AVISHEK

    CHATTERJEE, and MICHAEL ZOLLHÖFER, Max Planck Institute for Informatics HELGE RHODIN, EPFL DUSHYANT MEHTA, HANS-PETER SEIDEL, and CHRISTIAN THEOBALT, Max Planck Institute for Informatics ʹΞ͵΍͹ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ 201813564 ౖԲ༑ഇ #2 (෻αʖη) SIGGRAPH 2018 ୱءΩϟϧͲࡳӪ͠Ηͪӫ଀ΝخͶɾਕؔ͹ϛʖθ ͖Δ஥༽ͤΖҧෲΉͲΝ3D࠸ߑ஛ͤΖϜʖΩϪηϏ ϓΧʖϜϱηΫϡϕοϡٗढ़͹఑Ҍ ୱءΩϟϧͶΓͮͱࡳӪ͠Ηͪӫ଀͹ΊΝ೘ྙͳ͢ ͪॵΌͱ͹3DϏϓΧʖϜϱηΫϡϕοϡٗढ़Ͳ͍Ζɿ Sparse 2Dͳbatchϗʖη͹ࢡ੐ਬఈघ๑Ν༽͏ͪCNN ͶΓΖਕؔ͹3Dࢡ੐ݗड़Νࡀ༽͢ͱ͏Ζɿ ߻ܯ120ຌ͹ϑυΨέϨρϕΝ༽͏ͱϗϱοϜʖέ Νߨͮͪɿ࣯ద͵ݗৄͲͺɾસͱ͹ϗϱοϜʖέ υʖνιρφͶଲ͢ɾ׮સ͵݃ՎΝಚͪɿ ࠹నԿ͠Ηͱ͏͵͏CPUαʖχͲͺҲͯ͹೘ྙϓ ϪʖϞΝॴཀྵͤΖ͹Ͷ༁1.2෾Νགྷͪ͗͢ɾdata parallel optimizationΝ༽͏Ζ͞ͳͲ୉෱ͶրྒྷͲ͘ ΖɿগཔదͶͺϨΠϩν΢ϞॴཀྵΝ໪ࢨͤɿ Robertini et al. 2016
  60. M2M-based smart health service for human UI/UX using motion recognition

    3PZ$1BSL )PJMM+VOH %POH,VO4IJO (VJ+VOH,JN ,VO)P:PPO ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱ൑அ͔ͨ͠ ਓؒͷ݈߁ঢ়ଶΛஞ࣍*P5σόΠεͰܭଌ͠ɺͦ ΕΛ8#"/ 8JSFMFTT#PEZ"SFB/FUXPSL ͱ ͯ͠ूੵ؅ཧ͢Δ௨৴ٕज़Λ঺հͨ͠΋ͷɻ ઌߦݚڀͱͷൺֱ ͦΕͧΕͷ෼໺ɾ঱ঢ়ʹରͯ͠஫໨ͯ͠ܭଌ͢Δ ٕज़͸͋Δ͕ɺͦΕΒΛ౷߹ɾղੳ͠૯߹తͳ਍ அΛग़ͨ͢Ίͷूੵٕज़͕ߏங͞Ε͍ͯͳ͔ͬͨɻ ٕज़΍ख๏ͷΩϞ ௨৴ٕज़ͷେݩͱͯ͠͸8#"/ͱ͍͏طଘͷٕ ज़ΛԠ༻͍ͯ͠ΔɻาߦτϥοΩϯάʹ͸;JHCFF ௨৴ɺ৺ిਤɾ೴೾ͷ৘ใ͸#MVFUPPUIͳͲΛ༻ ͍ɺ8#"/಺িಥճආॲཧͷಋೖͳͲɺଟ͘ͷ ௨৴ؔ࿈ٕज़Λซ༻͠ɺਓମࣗମΛωοτϫʔΫ Խͤͯ͞௨৴ͷ࿮૊ΈʹऔΓࠐΜͰ͍Δ఺ɻ ҩྍػؔͰܭଌͨ͠σʔλͱ͜ͷٕज़Ͱܭଌͨ͠ σʔλΛൺֱ͠ܭଌ਺஋͕ਖ਼֬Ͱ͋Δ͜ͱΛ֬ೝɻ ৗʹܭଌ͍ͯͨ͠౷ܭ৘ใ͔Βඃݧऀͷ݈߁ঢ়ଶ ͱҩྍͷํ਑Λಋ͖ग़ͤͨ͜ͱ͔Β௨৴͕੒ޭ͠ ͍ͯΔ͜ͱΛݕূͨ͠ɻ ٞ࿦͸͋Δ͔ ɹҩྍػؔͱͷ࿈ܞɺ݈߁ঢ়ଶѱԽͷ༨஍ɺ౷ܭ ৘ใ͔Βͷ঱ঢ়਍அɻԠ༻͢Δ͜ͱ͕Ͱ͖Δൣғ ͕ඇৗʹ޿͍͜ͱ͕ັྗͰ͋Δɻ ɹਓମΛऔΓғΉΑ͏ʹωοτϫʔΫΛுΓ८Β ͤΔٕज़͸͞ΒʹԠ༻͕ར͘ͱࢥΘΕΔɻͦΕΒ ૬ੑͷྑ͍ٕज़ͷ໛ࡧΛ͢Δ΂͖ɻ ࣍ʹಡΉ΂͖࿦จ ਓମΛωοτϫʔΫʹऔΓࠐΉٕज़ͷ࿦จɻ 6*45΍$)*ͷ࿦จʹώϯτ͕͋Γͦ͏ɻ ߴ૔ྱ ਓؒίʔε $MVTUFS$PNQVUJOH
  61. Color Balance and Fusion for Underwater Image Enhancement $PESVUB0"ODVUJ$PTNJO"ODVUJ$ISJTUPQIF%F7MFFTDIPVXFS -*;)&/:6

    ਓؒίʔε ͲΜͳ΋ͷ ഔମͷࢄཚ͓ΑͼٵऩʹΑͬͯྼԽͤͨ͞ ਫதͰั֫͞Εͨը૾Λ޲্ͤ͞Δٕज़ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ಛघͳϋʔυ΢ΣΞ΍ਫதͷঢ়گ΍γʔϯ ͷߏ଄ʹؔ͢Δ஌ࣝΛඞཁͱ͠ͳ͍ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ ΠϝʔδΞϓϩʔν͚ͩΛ࢖͏ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ طଘͷಛघͳਫதम෮ڧԽٕ๏ͱൺֱ͢Δ ٞ࿦͸͋Δ ʁ ৭͕׬શʹ෮ݩ͞ΕΔͱ͸ݴ͑ͳ͍ɻ ಛʹΧϝϥ͔Βԕ͍ྖҬͰ͸ɺ ಶΓ͸·ͨ࢒͍ͬͯΔɻ ࣍ʹಡΉ΂͖࿦จ Green Internet of Things for Smart World
  62. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 8,䛻䜘䜛㧗⢭ᗘ䛺ㄪ⠇䛜ྍ⬟䛺䝉䝹䝣║ᗏ෗┿᧜ᙳ䝅䝇䝔䝮 䜢ᥦ♧䛩䜛䚹8,䜢ᥦ♧䛩䜛䛣䛸䛻䜘䛳䛶䝴䞊䝄䞊䛜⮬ศ䛷᧜ᙳ ᫬䛻┠䛾఩⨨䜢㍑ṇ䛷䛝䜛䜘䛖䛻䛩䜛䚹 䜲䞁䝍䝷䜽䝔䜱䝤䛺䝅䝇䝔䝮䜢㛤Ⓨ䛧䛶䝴䞊䝄䞊ホ౯䛧䛯䚹⿦⨨

    䜢▱䜙䛺䛔ึᚰ⪅䛻䝉䝹䝣䛷║ᗏ෗┿䜢ྲྀ䜙䛫䛶䚸᏶඲䛺║ ᗏ෗┿䛜ྲྀ䜜䜛䛛䛹䛖䛛ホ౯䛧䛯䚹 䝴䞊䝄䞊䛾ど⥺ไᚚ䛜䛷䛝䛺䛔䛯䜑ṇ☜䛺⥙⭷᧜ᙳ᫬䛻㧗 ౯䛺ᶵჾ䛸䜸䝨䝺䞊䝍䛜ᚲせ䛰䛳䛯䚹䜎䛯䚸▖Ꮝ䜢㛤䛟⸆ရ䜢 ౑䛖ᚲせ䛜䛒䛳䛯䚹 ⇍⦎䛧䛯䜸䝨䝺䞊䝍䛺䛧䛻㧗⢭ᗘ䛺᧜ᙳ䛜ྍ⬟䛻䛺䜚䚸་⒪䛾 Ⓨ㐩䛜ぢ㎸䜑䜛䚹ᑗ᮶ⓗ䛻䜽䝷䜴䝗໬䛧䜘䛖䛸⪃䛘䛶䛔䜛䚹どぬ 㞀ᐖ⪅䛿ヨ䛧䛶䛔䛺䛔䚹 ᯛ䛾஧ḟඖ䝷䜲䝖䝣䜱䞊䝹䝗䜢ィ⟬䛧䛶స䜙䜜䛯䝢䞁䝩䞊䝹䝬 䝇䜽䛻䜘䛳䛶䚸㐺ษ䛺䜰䜲䝪䝑䜽䝇䛾఩⨨䛻䛔䜛䛸䛝䛰䛡⏬ീ䛜 ぢ䛘䜛䜘䛖䛻䛩䜛䚹 .UHVVDQG6WDUQHU 0DLPRQH /DQPDQDQG/XHENH ,WRKDQG.OLQNHU3ORSVNL ே㛫 72*௒஭
  63. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ *&&& Simultaneous Feature and

    Dictionary Learning for Image Set Based Face Recognition Jiwen Lu, Gang Wang, Weihong Deng, and Jie Zhou إը૾͔Βͷࣝผ৘ใΛஈ֊ͷֶशखॱͰڞಉ ར༻͢Δ͜ͱ͕Ͱ͖ΔΑ͏ʹɺະ஌ͷإըૉ͔Β หผతʹಛ௃ͱࣙॻΛಉ࣌ʹֶश͢Δ4'%-ख๏ ͦΕͧΕͷը૾ϑϨʔϜΛࣝผతͳಛ௃෦෼ۭؒ ʹ౤Ө͠ɺΑΓ۩ମతͳ৘ใΛநग़Ͱ͖ΔΑ͏ʹ Ϋϥεݻ༗ͷࣙॻͰͦΕΛූ߸Խ͢Δ ։ൃͨ͠4'%-ͱ%4'%-͸࠷৽ͷը૾σʔληο τͰɺ΄ͱΜͲͷطଘͷإࣝผํ๏ΑΓ΋ߴਫ਼౓ 0OUIF)POEBɺ.P#Pɺ͓Αͼ:5$σʔληοτΛ ༻͍ͯϥϯμϜͳτϨʔχϯάͱςετηοτΛબ୒ ͯ͠ճ࣮ݧΛߦ͍ɺฏۉࣝผ཰Λܭࢉͯ͠ൺֱ [5] H. Cevikalp and B. Triggs. Face recognition based on image sets. In CVPR, pages 2567–2573, 2010. [9] Y.-C. Chen, V. M. Patel, P. J. Phillips, and R. Chellappa. Dictionarybased face recognition from video. In ECCV, pages 766–779, 2012. [10] Y.-C. Chen, V. M. Patel, P. J. Phillips, and R. Chellappa. Dictionarybased face and person recognition from unconstrained video. IEEE Access, 3(3):1783–1798, 2015. [25] Y. Hu, A. S. Mian, and R. Owens. Face recognition using sparse approximated nearest points between image sets. PAMI, 34(10):1992– 2004, 2012. [41] Z. Lei, M. Pietikainen, and S. Z. Li. Learning discriminant face descriptor. TPAMI, 36(2):289–302, 2014.
  64. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ Yi-Chen Chen1, Vishal M.

    Patel1, P. Jonathon Phillips2, and Rama Chellappa1 Dictionary-based Face Recognition from Video &$$7 ϏσΦϕʔεͷإೝࣝͷͨΊ ͷϏσΦࣙॻͷఏҊ ࠓޙɺө૾͔ΒͷೝࣝͷͨΊʹإ ͱ਎ମͷ྆ํͷ৘ใΛޮՌతʹ༥ ߹͢ΔΞϧΰϦζϜͷ։ൃ ಉ͡ඃࣸମͷෳ਺ͷϏσΦγʔέϯε͸ɺղ૾౓ɺ র໌ɺ࢟੎ɺ͓Αͼද৘ͷมԽΛݟΔ͜ͱ͕Ͱ͖ɺ ޮՌతͳإೝࣝΞϧΰϦζϜઃܭʹߩݙ র౓΍࢟੎ͷมԽʹڧ͍ࣙॻֶश๏ʹجͮ͘ ੜ੒Ξϓϩʔν ̏ͭͷϏσΦσʔληοτΛ༻͍ͨϥϯ μϜͳςετΛࢼߦͨ͠
  65. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ Dictionary-based Face and Person

    Recognition from Unconstrained Video Yi-Chen Chen, Student Member, IEEE, Vishal M. Patel, Member, IEEE, P. Jonathon Phillips, Fellow, IEEE, and Rama Chellappa, Fellow, IEEE *&&& إͱମͷϏσΦࣙॻʹΑΔө૾͔Βͷ ը૾ೝٕࣝज़ ೝࣝਫ਼౓Λ޲্ͤ͞ΔͨΊʹɺਓؒͷ ্ମಛ௃͓Αͼಈ͖ࣝผ৴߸Λ࢖༻ ࣙॻֶशΛলུͨ͠ϕʔεϥΠϯͰɺ ຊख๏ͷੑೳ޲্Λ࣮ݧతʹଌఆͨ͠ إʹର͢ΔΞϓϩʔνΛ͍ࣔͯͨ͠ͱ͜Ζ ʹ਎ମ͔Βͷೝࣝʹ΋ಉ͡ํ๏Λద༻ͨ͠
  66. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ Face Recognition Using Sparse

    Approximated Nearest Points between Image Sets *&&&b Yiqun Hu, Ajmal S. Mian, and Robyn Owens ޮ཰తͳը૾ೝࣝͷͨΊͷू߹ͷը૾ αϯϓϧͱͦΕΒͷΞϑΟϯϋϧϞσ ϧΛؚΉը૾ू߹ͷ݁߹දݱͷఏҊ 6$4%)POEBɺ$.6.P#Pɺ :PV5VCF$FMFCSJUJFTͷإσʔληοτ ʹؔ͢Δแׅతͳ࣮ݧΛߦͬͨ ηοτؒڑ཭Λܭࢉ͢ΔͨΊʹɺεύʔ εۙࣅ఺ʢ4"/1ʣΛಋೖɺ࠷΋͍ۙ఺ ͓ΑͼͦͷૄͳۙࣅΛڞಉͯ͠࠷దԽ ઃఆڑ཭Λܭࢉ͢ΔͨΊͷεύʔεۙࣅ఺4"/1 ʢ,4"/1ʣͷΧʔωϧ֦ுͱɺ3#'Χʔωϧύ ϥϝʔλΛదԠతʹௐ੔͢ΔࣗಈΞϧΰϦζϜ
  67. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ Face Recognition Based on

    Image Sets Hakan Cevikalp, Bill Triggs $713b ݸʑͷը૾͔ΒͰ͸ͳ͘Ұ࿈ͷ ը૾͔ΒإೝࣝͷͨΊͷख๏ ತ໘ηοτؒͷ࠷খڑ཭ͷҙຯʹ͓͍ ͯ༩͑ΒΕͨςετྖҬʢݸਓʣʹ࠷ ΋͍ۙΪϟϥϦʔྖҬʢݸମʣͷೝࣝ ͭͷύϒϦοΫإσʔληοτʹؔ͢Δ ࣮ݧʹ͓͍ͯɺఏҊ͞Εͨํ๏͕͍͔ͭ͘ ͷطଘͷ࠷ઌ୺ٕज़ΑΓ༏Ε͍ͯΔ ಛ௃ۭؒʹ͓͚ΔತྖҬʢʹؔͯ͠Ϊϟ ϥϦʔ͓Αͼςετηοτ͔Βͷ֤ը૾ ηοτʹରͯ͠ಛ௃෇͚Λߦ͏
  68. ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͲΜͳ΋ͷʁ Learning Discriminant Face Descriptor

    Zhen Lei, Member, IEEE, Matti Pietika¨ inen, Fellow, IEEE, and Stan Z. Li, Fellow, IEEE *&&& σʔλۦಈܕͷ൑ผࣜإهड़ࢠ ʢ%'%ʣΛֶश͢Δख๏ ಉछҟ࣭إೝࣝ໰୊ͱҟछإೝࣝ ໰୊ͷ྆ํͰςετΛߦͬͨ ϏσΦϕʔεͷإ෼ੳ ʹ͓͚Δ%'%ͷௐࠪ ൑ผը૾ϑΟϧλΛֶश͠ɺ࠷దͳۙ๣αϯϓϦϯ άΛ൑ఆ͠ɺࢧ഑తύλʔϯ͕౷ܭతʹߏங͢Δɻ ·ͨɺޮՌతͰݎ࿚ͳػೳΛநग़͢ΔͨΊͷҟ࣭ͳ ΫϩεϞμϦςΟإೝࣝ໰୊ʹఏҊ͞Εͨख๏ র໌ͱදݱͷมԽʹରͯ͠ೝࣝ ͷਫ਼౓͕ैདྷΑΓߴ͍
  69. CGANS WITH PROJECTION DISCRIMINATOR – ICLR 2018 Takeru Miyato1, Masanori

    Koyama2 [email protected] [email protected] 1Preferred Networks, Inc. 2Ritsumeikan University ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ֬཰࿦తϞσϧͷҰൠతͳϑΝϛϦʔʹΑͬͯಈػ෇͚ΒΕͨ D("/ͷ%JTDSJNJOBUPSͷϞσϧΛఏҊͨ͠ɽ৚݅෇͖ը૾ੜ੒͓Α ͼ௒ղ૾ԽͰɼ(FOFSBUPSͷੑೳΛେ෯ʹվળ͢Δ͜ͱ͕Ͱ͖ͨ ΑΓଟ༷ੑ͕޿͘ɼϞʔυ่յ͠ʹ͍͘ੜ੒͕Ͱ͖ͨɽ ͜Ε·Ͱͷ$POEJUJPOBM("/Ͱ͸୯ʹϥϕϧϕΫτϧZΛ (FOFSBUPSͷೖྗ૚͔தؒ૚ʹ࿈݁͢Δ͚͕ͩͩͬͨɼ ("/ͷ໨తؔ਺Λ෼ղ͠ɼ৚݅ϕΫτϧZͱಛ௃ϕΫτϧ Λ಺ੵ͢Δࣜ  ʹؼணͤͨ͞ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ Ϋϥεͷ*-473$σʔληοτͷϥϕϧ৚݅෇͖ը૾ੜ ੒ͷ඼࣭Λ"$("/ͱ'*%είΞͰൺֱͨ͠ɽD("/ͷϞσϧΛ௒ղ ૾λεΫʹద༻ͨ͠৔߹ɼDPODBUʹجͮ͘D("/ B ΑΓ΋ϥϕϧ ෼ྨثͷਫ਼౓ͷ఺ͰΑΓ༏Εͨߴ඼࣭ͷ௒ղ૾ը૾Λੜ੒͢Δ͜ͱ ͕Ͱ͖ͨɽ 1 ZcY Λ୯७ͳ෼෍ͱԾఆ͍ͯ͠Δ͕ɼ࣮ࡍ͸ͦ͏Ͱ ͸ͳ͍͔΋͠Εͳ͍ͷͰཧ࿦తͳߟ࡯͕ඞཁɽ 5BLFSV .JZBUP 5PTIJLJ ,BUBPLB .BTBOPSJ,PZBNB BOE:VJDIJ:PTIJEB 4QFDUSBMOPSNBMJ[BUJPOGPSHFOFSBUJWFBEWFSTBSJBMOFUXPSLT*O*$-3  *TIBBO(VMSBKBOJ 'BSVL "INFE .BSUJO"SKPWTLZ 7JODFOU%VNPVMJO BOE"BSPO $PVSWJMMF*NQSPWFEUSBJOJOHPGXBTTFSTUFJO ("/TBS9JW QSFQSJOU BS9JW  +BF)ZVO-JNBOE+POH$IVM :F(FPNFUSJD("/BS9JW QSFQSJOU BS9JW   େીࠜ޺޾  ਓؒίʔε  
  70. SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS- ICLR 2018 Takeru Miyato1

    , Toshiki Kataoka1 , Masanori Koyama2 , Yuichi Yoshida 1 Preferred Networks, Inc. 2 Ritsumeikan University 3 National Institute of Informatics ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ("/ͷֶशΛ҆ఆͤ͞ΔͨΊɼॏΈΛTQFDUSBM OPSNBMJ[BUJPOͨ͠ɽ ϋΠύʔύϥϝʔλͱͯ͠ɼϦϓγοπఆ਺Λௐ੔͢ Δ͚ͩͰྑ͘ͳͬͨɽ·ͨɼௐ੔͠ͳͯ͘΋ྑ͍ੑೳ ͕ग़Δɽܭࢉίετ΋খ͍͞ɽ ϨΠϠʔ͝ͱͷॏΈͷεϖΫτϧϊϧϜΛਖ਼نԽ͢Δ͜ͱͰɼ ϨΠϠʔ͝ͱͱɼϨΠϠʔશମͷϦϓγοπ੍໿ΛͰ཈͑Β ΕΔɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ $*'"3ͱ45-ɼ*NBHF/FUͰը૾ੜ੒ɽଞͷਖ਼نԽख๏ ͱൺ΂ͯੑೳΛൺֱɽ 8FJHIUOPSNBMJ[BUJPOΑΓ͸΄Ͳ஗͍ɽ Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate train-ing of deep neural networks. In NIPS, pp. 901–909, 2016. େીࠜ޺޾ ਓؒίʔε   
  71. Improved training of wasserstein GANs – NIPS 2017 Ishaan Gulrajani

    et al. Montreal Institute for Learning Algorithms ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 8("/ʹ͓͚Δ8FJHIUDMJQQJOH ॏΈΛҰఆͷൣғ಺ʹऩΊΔ ͷ ໰୊Λࢦఠ͠ɼղܾ͢ΔHSBEJFOUQFOBMUZ 8("/(1 ΛఏҊ 3FT/FUϕʔεͷਂ͍ωοτϫʔΫͰ΋ɼ8("/ͳͲ ΑΓ8("/(1ͷํ͕Ϟʔυ่յ͠ʹ͍͘ੜ੒͕Ͱ͖ Δɽ -PTTʹHSBEJFOUQFOBMUZͷ߲ΛՃ͑ͨɽ  Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ݧͷͨΊʹ࡞ͬͨUPZ෼෍ʹ͓͍ͯɼߴ͍ϞʔϝϯτΛଊ͑ΒΕͨɽ ޯ഑രൃফࣦ͕ى͖ͳ͍ɽ *ODFQUJPO4DPSF͸ %$("/ͱൺ΂ͯऩଋ͸஗͍͕ɼऩଋޙ͸҆ఆ͍ͯ͠ Δɽ :8V :#VSEB 34BMBLIVUEJOPW BOE3(SPTTF0OUIFRVBOUJUBUJWFBOBMZTJT PGEFDPEFS CBTFEHFOFSBUJWFNPEFMTBS9JW QSFQSJOUBS9JW   େીࠜ޺޾  ਓؒίʔε  
  72. Learning Face Age Progression: A Pyramid Architecture of GANs -

    CVPR2018 Hongyu Yang1 Di Huang1 Yunhong Wang1 Anil K. Jain2 1 Beihang University, China2 Michigan State University, USA
 ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ೖྗը૾ͷਓ෺ͷ࿝ԽإΛग़ྗɽ ೥ྸม׵ͷਖ਼֬͞ͱɼਓ෺ͷಉҰੑͷอଘͰੑೳ͕ྑ ͘ͳͬͨɽ DiscriminatorͰɼ೥ྸͷಛ௃நग़Λஈ֊తʹͨ͠ɽਓ෺ͷಉҰੑΛอͭͨΊʹ deep face descriptor [20] Λ༻͍ͯɼݸਓͷإಛ௃Λಛ௃ۭؒʹམͱ͠ࠐΜͩ ͱ͖ͷloss΋ܭࢉͨ͠ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ .031)ͱ$"$%σʔληοτΛ༻͍ͯ࿝Խͷਐߦ౓ɼਫ਼౓ɼ ਓ෺ͷಉҰੑΛ࣮ݧɽ঎༻ΞϓϦͳͲͱ΋ൺֱɽ 94IV +5BOH )-BJ --JV BOE4:BO1FSTPOBMJ[FEBHF QSPHSFTTJPOXJUIBHJOHEJDUJPOBSZ*O*$$7 QBHFTr     
 େીࠜ޺޾ ਓؒίʔε   
  73. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GAN -

    CVPR2018 Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ߴղ૾౓ʢYʣͰϥϕϧม׵ͱ෺ମฤू ΛͰ͖ΔΑ͏ʹͨ͠ɽ QJYQJYΑΓߴղ૾౓ԽɼςΫενϟͳͲͷΠϯλϥ ΫςΟϒͳฤू͕Ͱ͖Δɽ ஈ֊తʹੜ੒(global generatorͱenhancer. enhancerΛ͔͚͍͚ͯ͹ແݶ ʹେ͖͘Ͱ͖Δʣɼஈ֊తʹࣝผ͢Δɽperceptual lossΛdiscriminatorʹ Ճ͑ͨɽdiscriminatorʹڥքϚοϓɼηάϝϯςʔγϣϯϚοϓɼ͓Αͼ࣮ /߹੒ը૾ͷνϟωϧϫΠζ࿈݁Λೖྗͨ͠ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ఆྔతʹ͸ɼϥϕϧը૾͔Βม׵͞Εͨࢢ֗ը૾Λطଘख๏Ͱηάϝ ϯςʔγϣϯ͠ɼJOQVUͱൺֱ͢Δɽ ఆੑతʹ͸ɼ"NB[PO.FDIBOJDBM5VSLͰ$JUZTDBQFTEBUBTFU<>͔ Βੜ੒ͨ͠ը૾ΛධՁͯ͠΋ΒͬͨɽʢͲ͕ͬͪੜ੒ը૾͔ΫΠζʣ ҩྍը૾΍ੜ෺ֶʹ΋࢖͑ͦ͏ ++PIOTPO ""MBIJ BOE-'FJ'FJ1FSDFQUVBMMPTTFTGPSSFBMUJNFTUZMFUSBOTGFS BOETVQFSSFTPMVUJPO*O&VSPQFBO$POGFSFODFPO$PNQVUFS7JTJPO &$$7      ɹ "#--BSTFO 4,4”OEFSCZ )-BSPDIFMMF BOE08JOUIFS"VUPFODPEJOH CFZPOEQJYFMTVTJOHBMFBSOFETJNJMBSJUZNFUSJD*O*OUFSOBUJPOBM$POGFSFODFPO .BDIJOF-FBSOJOH *$.-  େીࠜ޺޾ ਓؒίʔε   
  74.     !   ##!#!#$# # !#!

    ##!"'!#!%$& !& !!   (    #'% BRCKE+ vL·ETe Ÿˆ‚xA¯I@B73;80+    ř}”  —tW,Z ¨ÀDMOl¶›¸‘DMN p–›aShdQ •Dµ;O* B1L?@¼†>A€’:=+ ŽD®JI4ôF+ wÃF/O+ ¼„¾¡qDM?@¤|6y¬QXcfi,_* £‹~ªƒ°{-.E­§²5DMN)ƺ CŒ“¢2MGs0¥‡›E©¢Q¼;O\g]k aShd3œ9P=7AQÁ’* ag^_`^V,YkUDMOrzm HE‰A Zb,ZEž»* ˜Ä¦E\g]k  [hj,Z³Š¹E•µoy ¬An«DMO<Eš…* –±E•µoEš…Dn«µoQ¿½* ag^_`^V,YkU•µoDu;Oô
  75.          

        +/+/)"#085.# ++8#.#+('+ 5'#/0--.'2 -#2,'--#+-6#+203*+3*++  %40$'2 9  4/&2'73 /+4'&+/)&0. nKSurœ¤‘VˆG¥Š„¯M–OUC LQR:€‘ur­•KAI{ªpI>S~ ˜—V{’A:DTV®¬AH¦°sšJ¨£ œ{‹°V¡BS¥Š©„¯V…’AE; {‹°NyvmJ‡”L›w@TE~˜L QFH|q¨;            +/+/)"#0+('+ 5*+/"+*'/)'-'/'4'+/'2!'/!#/) 5#/85/ !#/)+203*+3*++  12+-   '05-'15$-+%0(02'# §¢xƒ«V®¬AH:|q¨Ko u~V ˆGcY[dXjgV…’A:DM^fhk< ^ilJŸKƒ«`YeM™†VFE; ‰žLQFHª{V|BS?JI:“>E§ ¢xƒ«MW\ahZ<`VŽ}M^_bgL –O‚P?J=I>E;   ±zŒ  Žt]<_
  76. #   #!"% ! $!& # !"!" $-.(1 

    $50755(1$,28$11,"42,$12%$4,$11((6(45(1$ $.2%!,0215(1%$53(4241%;.%  $:   !$125(#! !+$3(&+$1*,1*,16(4)$&(N`[Wa> †N< r‘”¡QŒlN‹sN\Y_^VšŠEI v|N!NuoVšŠFT= šŠNth<v|N!N‹sM@?Ix£N ˜A“DUH=  !# !! &!"  #!!"!#" $8,'244($6+,1$ $3$'2327/27+4,5623+(7%(4$1 :1,.$ +$8(4,!6())(1 (,&+(46&+,0(1*(5!.:/$4",%%,65 +663 '9'2,24*   '3   ’‰g—L€w›qV…FTHPNX\]b žŸzŽV‹sE e~FTCKMRS<ž} Ndœˆ@ROn–ˆVyƒDGT= e~ž}Niˆfm‚K™{}e~MkEI cL`>]V•TCKAJBH=   ¢‡p„  †jZ>\
  77.    !      

      ##*$ '&&*!(( "(- *#*(+"#+"##  * '' #.,' " '+,%#% "#   /     '- * )e[AgR3Pn:4@d0`U0Yc= <>qQ69at7@HLF2BDJKC2 I2?Srk]A^j681 sTM\pA;7@5;:0p_?i_A lW6fV=POmZANo>7@1   uhXb  gRE2G
  78. Providing Haptics to Walls & Heavy Objects in Virtual Reality

    by Means of Electrical Muscle Stimulation (CHI 2017) Pedro Lopes, Sijing You,Lung-Pan Cheng, Sebastian Marwecki, and Patric Baudisch &.4Λ࢖ͬͯ73ۭؒ಺ͷน΍ॏ͍΋ͷʹର͢Δ৮֮Λ ఏࣔͨ͠ɻ ൺֱతʹ͍ܰ΢ΣΞϥϒϧͳ૷ஔͰͷॏ͍΋ͷͱนͷ ৮֮ఏࣔʹ੒ޭͨ͠ɻ &.4ͷ࢖༻ɻ࿹ʹిۃΛऔΓ෇͚৮֮Λ࠶ݱ͠ɺے೑ ͷ৳ͼॖΈΛίϯτϩʔϧ͢Δ͜ͱͰॏ͞Λ࠶ݱ͢Δɻ ·ͨίϯςϯπ಺ͰͷԻ΍ࢹ֮ޮՌ΋৮֮ϑΟʔυόο ΫΛॿ௕͢Δɻ σϞΛ࡞੒͠ɺԿਓ͔ʹମݧͯ͠΋Β͍ϑΟʔυόο ΫΛಘͨɻ ߗ͍นͷ࠶ݱ͕೉͘͠ɺ௕࣌ؒ͋Δ͍͸ڧ͘นΛԡ͢ ͱ&.4͔Βͷిؾ৴߸͕ҙࣝͰ͖ͯ͠·͍ϦΞϦςΟ ͕ബΕΔɻ Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16), 1968-1979. 201813567 দӬঘ೭ #FTMA18 (ਓؒ) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ
  79. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual

    Reality Experience( CHI ‘16) Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, Andrew D. Wilson ෳ਺ͷԾ૝ΦϒδΣΫτʹ৮֮ϑΟʔυόοΫΛ༩͑ ΔҝʹIBQUJDSFUBSHFUJOHͱ͍͏ख๏Λར༻͠ɺ୯Ұ ͷΦϒδΣΫτ͔Βෳ਺ͷԾ૝෺ମʹ৮֮ϑΟʔυόο ΫΛ༩͑Δɻ Lower Extremity Lateral Skin Stretch Perception for Haptic Feedback (Haptics IEEE Transaction 9,62-68,2016) %BOJFM,:$IFO *BJO""OEFSTPO $BNFSPO( 8BMLFS BOE5IPS'#FTJFS ৮֮ϑΟʔυόοΫΛੜ੒͢ΔҝʹɺԼࢶӡಈͷࡍͷ ൽෘͷ৳ॖʹ஫໨͠ɺͦͷมҐ΍଎౓ΛఆྔԽ͢Δ͜ ͱʹ੒ޭͨ͠ɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  80. TurkDeck: Physical Virtual Reality Based on People (UIST ‘15) Lung-Pan

    Cheng, Thijs Roumen, Hannes Rabtzsch, Sven Kohler,Patric Schmidt, Robert Kovacs, Johannes Jasper,Johans Kemper, and Patric Bausch 5VSL%FDLͱ͍͏Ϣʔβͷ73಺Ͱͷײ֮Λิॿ͢Δγ εςϜɻ༗ݶͷ࣮ۭؒʹ͓͍ͯ೚ҙͷ޿͞ͷϰΝʔνϟ ϧۭؒΛੜ੒͢Δ͜ͱ͕Ͱ͖ΔɻϰΝʔνϟϧ্ۭؒ ͷখ෺Λݱ࣮ۭؒͰରԠͤ͞Δɻ·ͨ͜ͷγεςϜͷ ࣮ݱʹ͸͍ΘΏΔਓؒΞΫνϡΤʔλΛ࢖༻͍ͯ͠Δɻ Demo: An Inexpensive and Lightweight Mechanical Exoskelton for Motion Capture and Force Feedback in VR(CHI ‘16) 9JBPDIJ(V :JGFJ;IBOH 4FJ[F4VO :VBO[IF#JBO  %BP;IPV 1FS0MB,SJTUFOTTPO ܰྔͰίϯύΫτͳ৮֮ϑΟʔυόοΫσόΠεͷ࡞ ੒ɻखʹϰΝʔνϟϧ্ۭؒʹ͓͚Δ৮֮ఏࣔͷͨΊ ͷػցతͳ֎ࠎ֨Λ͚ͭΔɻ͜ͷ֎ࠎ֨͸ܰ͘ɺ҆Ձ ͰηϯαͳͲͷ֎෦σόΠεΛඞཁͱ͠ͳ͍ͷͰ࣮૷ ίετ͕௿͍͜ͱ͕ར఺ʹ͋͛ΒΕΔɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  81. Wearable 6-DoF Wrist Haptic Device “Spider-W” (SA ‘15) Kazuki Nagai,

    Soma Tanoue, Katsuhito Akahane, Makoto Sato VR্ۭؒͰҐஔํ޲ٴͼํ޲ଌఆػೳɺ͞Βʹͦͷ ϑΟʔυόοΫػೳΛ༗͢ΔϫΠϠʔυϦϑτܕͷ΢Σ ΞϥϒϧϋϓςΟοΫσόΠεΛ࡞੒ͨ͠ɻSpider-Wͱ ໊෇͚ΒΕͨ͜ͷσόΠε͸6DoFͷӡಈʹରԠ͍ͯ͠ Δɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  82. ,QWKHH\HRIDKXUULFDQHWKHUHLVTXLHWIRUMXVWDPRPHQW DOWFKL 9DQHVVD7KRPDV0DQX-%UXHJJHPDQQ'LQJ:DQJ$QG\'DUE\%HQMDPLQ:RKO /LQGVD\0DF'RQDOG9HUPHXOHQ2OLYHU%DWHV'DYLG)HOGPDQ 䛹䜣䛺䜒䛾䠛 ㆟ㄽ ඛ⾜◊✲䛸ẚ䜉䛶 ື⏬䜔ᡭἲ䛾䜻䝰 ḟ䛻ㄞ䜐䜉䛝ㄽᩥ ᭷ຠ䛾☜ㄆ

    䛧䛶䛺䛔 ᦠᖏ㟁ヰ䜔䝜䝟䝋䛾㟁※䜢ษ䜛 䛺䛧 &+,䛿ẖ᪥䝽䞊䜽䝅䝵䝑䝥䜔䜙䝥䝺䝊䞁 䜔䜙䝟䞊䝔䜱䞊䜔䜙䛒䛳䛶኱ኚ䛰䛛䜙 3䛾ఇ᠁䛾᫬㛫䜢⏝ព䛩䜛䛣䛸䛷䚸䜎 䜛䛷ྎ㢼䛾䜘䛖䛻ᛁ䛧䛔 &+,䛾୰䛻Ᏻ ᑀ䜢䜒䛯䜙䛩䚹 ඛ⾜◊✲䛺䛧 -RXUQDORISHUVRQDOLW\DQGVRFLDOSV\FKRORJ\ 5HIOH[LYH3UDFWLFHVIRUWKH)XWXUHRI'HVLJQ (GXFDWLRQ$Q([HUFLVHLQ(WKQR(PSDWK\ 'R<RX3UDFWLFH:KDW<RX3UHDFK"$ 4XDOLWDWLYH([SORUDWLRQRI7KHUDSLVWV¶3HUVRQDO 3UDFWLFHRI&RPSDVVLRQ)RFXVHG7KHUDS\ ே㛫䝁䞊䝇ㄞ䜣䛰ேᶫᮏ⚈
  83. ʹΞ͵΍͹͖ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏͖ ٗढ़Ώघ๑͹ΫϠ ʹ͑Ώͮͱ༙ްͫͳݗৄ͖ͪ͢ ࣏Ͷಣ΋΄͘࿨ช 201611455 Ӯੋ ୕໷ #2ʤਕؔαʖηʥ #FTMA18

    Muscle Simulation for Facial Animation in Kong: Skull Island 6,**5$3+d մ๦ָͶخͰ͏ͱا໚͹ࠐ֪Ώ۔೓Νε ϝϣϪʖεϥϱϠυϩΝࡠ੔ͤΖɽ ॊཔ͹ΠωϟʖεϥϱͲͺࡋ͖͏ا͹න৚ Νනͤ͞ͳ͗Ͳ͘͵͚ɼΏΖͳ͵ͮͱ΍α ηφ͹͖͖ΖࡠۂͲ͍ͮͪ͗ɼך΋঺͑͵ ʹ͹ࡋ͖͏ಊ͗͘Ͳ͘Ζɽಊ෼͵ʹΫϡϕ οϡ͹ͳΕͶ͚͏ଲেΝਜ਼֮Ͷ࠸ݳͤΖ͞ ͳ͗Ͳ͘Ζɽ ۔೓Ώࠐ֪͹ಊ͘Νմ๦ָదͶߡ͓ͱε ϝϣϪʖεϥϱͤΖघ๑ Automatic Generation of Anatomical Face Simulation Models Art-directed Muscle Simulation for High- end Facial Animation ॊཔ͹Πωϟʖεϥϱͳർ΄ͱɼࡋ͖͵ಊ ͗͘࠸ݳͲ͘ͱ͏ͪɽࣰࡏͶKong͹Πω ϟʖεϥϱ͹෈ࣙષ͗͠ভ͓ͪɽ Matthew Cong, Lana Lan, Ronald Fedkiw
  84. Neural Best-Buddies: Sparse Cross-Domain Correspondence Kfir Aberman, Jing Liao, Mingyi

    Shi, Dani Lischinski, Baoquan Chen, Daniel Cohen-Or  ຕͷҟͳΔܗঢ়ɾ֎؍ɾΫϥεͷը૾͔Βಛ௃Λநग़ ͠ ରԠ෇͚Λߦ͏ ෺ମͷॏཁͳಛ௃ͷΈΛऔΓग़ͯ͠ରԠ෇͚Λͨ͠ ҟͳΔΫϥεؒͰͷରԠ෇͚Λͨ͠ ྨࣅੑଌ౓ͱͯ͠ఏҊ͞Ε͍ͯΔ#FTU#VEEJFT 1BJST ##1 <%FLFMFUBM>Λ/FVSBM##1ʹ֦ு ͠ DSPTTEPNBJOͷରԠ໰୊Λղ͘ ը૾෼ྨ༻ʹ܇࿅͞Εͨ$//Λ΋͍ͪͨ ఏҊख๏ͱଞͷεύʔεϚονϯάͷࢹ֮తൺֱ࠷ઌ ୺ͷEFODFରԠख๏ͱͷൺֱϢʔβௐࠪҟͳΔେ͖ ͞ ࢟੎ ࢹ఺ͷ෺ମͷϖΞΛ༻͍ͯزԿֶతมܗʹର ͢Δݎ࿚ੑΛݕূͨ͠ DSPTTEPNBJOରԠ໰୊ͷϕϯνϚʔΫཱ͕֬͞Ε͍ͯ ͳ͍֎؍͕ҟͳΔΦϒδΣΫτͷ݁߹ը૾Λੜ੒ͨ͠ 201813558 ஑ాҏ৫ #2 (ਓؒίʔε) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 4*((3"1)
  85. ؔ࿈࿦จ George Wolberg. 1998. Image morphing: a survey. The Visual

    Computer. ࡾ֯ଌྔʹجͮ͘ϞʔϑΟϯάɺϝογϡϫʔϐϯάɺϑΟʔϧυϞʔϑΟϯά౳ʹ͍ͭͯͷௐࠪɽ Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm of artistic style. ίϯςϯπը૾ͱελΠϧը૾Λ༻ҙ͠ɼίϯςϯπը૾ʹඳ͔Ε͍ͯΔ΋ͷΛελΠϧը૾෩ʹม׵͢Δɽ ֶशࡁΈͷը૾ೝࣝϞσϧΛ༻͍ɼελΠϧߦྻΛੜ੒͠΋ͱͷೖྗը૾Λ࠷దԽ͢Δɽ Bumsub Ham, Minsu Cho, Cordelia Schmid, and Jean Ponce. 2016. Proposal flow. In Proc. CVPR. ηϚϯςΟοΫϑϩʔ͸ಉ͡ΦϒδΣΫτ͔ಉ͡γʔϯͰͷ෺ମͷରԠΛݟ͚ͭΔ͜ͱ͕ग़དྷ͕ͨɼҟͳΔΫϥεͷ ΦϒδΣΫτ΍γʔϯ͕େ͖͘ҟͳΔ৔߹͸্ख͍͔͘ͳ͔ͬͨɽηϚϯςΟοΫϑϩʔΛվྑͯ͠ϕϯνϚʔΫͰ ࠷ߴਫ४ͷ݁ՌΛಘͨɽ Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adaptive instance normalization. (BUFTFUBMͷը૾ελΠϧม׵͸஗͍ɽ·ͨɼϦΞϧλΠϜʹग़དྷΔ΋ͷ͕͋Δ͕ɼελΠϧ਺͕ݶΒΕ͍ͯΔɽզʑ ͸ɼϦΞϧλΠϜʹ೚ҙͷελΠϧΛద༻Ͱ͖Δख๏ΛఏҊ͢Δɽίϯςϯπͷฏۉͱ෼ࢄΛελΠϧͷฏۉͱ෼ࢄ ʹ߹ΘͤΔ৽͍͠"EBQUJWF*OTUBODF/PSNBMJ[BUJPOΛ༻͍࣮ͯݱͨ͠ɽ Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. $//Λ༻͍ͯ*NBHF/FUͷը૾ೝࣝλεΫͰ࠷ߴਫ४ͷ݁ՌΛಘͨɽυϩοϓΞ΢τ͕աֶशʹର͢ΔඇৗʹޮՌత ͳख๏Ͱ͋Δ͜ͱ͕Θ͔ͬͨɽ 201813558 ஑ాҏ৫ #2 (ਓؒίʔε)
  86. ´¾j^LKѐ  ÀÆ®¦ ­†SW    7J8A: oMfά9!4ά¡:KbZ68F 

    Qlo:KajVns:S s_rqIÚv9,F :^UMs6KajVns_pP°‘VW] i:°š ´”ŽŠ6Ð=47'#,(" £Ü:VW]i5;Qg`9CFQloRZ:KajVns°‘8 7#ӛ5ƒ 3D%â:Â5ά¡:™"œºBž·8ѪIy*¤, :#˜Ì/1. —€:ŽŠ5;hq[Z\[5$FgZs _pP 9C14KajVns IÄÅ9°‘5$FC9*"2-GD:gZsI«Œ9{+4CEm U#¹š*B,ÎÁ9,FKqTpXiIÈÍ,F'65mUdp]L I–@4F ˆ¥B¢Ö:Qk SW_‡¯ C%H"D8 9C14‚_pPI7:C9ÎÁ,G< :":Ä hqSek^qIÞÛ*¶w:ßà"D9¶w,FW]_:Ù»I,F 7B14ؒ/6Ï¿*. mU#³²)G.MsZeNWI¢Ã*,F"7"
  87. ´¾j^LKѐ  ÀÆ®¦ ­†SW  ¢Ã*;§*/&:cZs#¼"1. ÉÄ:•zI,FC8¸Ä5¹š*4AD 9!&FZWR6µ½*. MsZeNW:Y\_9CFosRÒ& —€šDG.-:>>:VW]iI“?­#¼"1.

     Iš14F­.09B14AD14x¨IÕ. „+/1. ‰á;F  CE¼%:KajVns_pPIÛu,F'65)D9ØÛ±I–@F '6#5$F ά¡:â*4FËÚ"D~ש:_pPÎÁIžÇ}5$8" @DG.…‹|t/6ceOhsW:Ÿ#Ý04*> 9Ê?=$áÔ; llumination-Guided Example-Based Stylization of 3D Renderings 
  88. Organic Primitives:Synthesis and Design of pH-Reactive Materials using Molecular I/O

    for Sensing, Actuation, and Interaction - CHI2017 Viirj Kan, Emma Vargo, Noa Machover, Hiroshi Ishii, Serena Pan, Weixuan Chen, Yasuaki Kakehi (MIT Media Lab, Keio University) ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Q)Λਓ͕ؒಡΊΔग़ྗʹม׵͢ΔɼηϯαʔΞΫνϡΤʔλʔͱͯ͠ ಇ͘ɼ৭ɼ೏͍ɼܗঢ়มԽͷૉࡐɻΞϯτγΞχϯ౳Λυʔύϯτͱ͠ ͯ࢖༻͠ɼ৭ͷεϖΫτϧɼܗঢ়มܗͷ౓߹͍ɼ೏͍͋Γͳ͠ͷ੾Γ ସ͑Λߦ͏ࡐྉΛ߹੒ͨ͠ ৭ͷมԽɼ೏͍ͷ์ग़ɼܗঢ়มԽΛ΋ͨΒ͢΋ͷ͸ݸผʹݕ౼͞Ε͖ͯͨɻ ԽֶऀͰ͸ͳ͍)$*ݚڀऀͰ΋શ৸۩ͱෳ਺ͷग़ྗΛඋ͑ͨίϯύΫτͳ ΠϯλʔϑΣʔεͷઃܭͷՄೳੑΛ༻ҙʹ͢Δ෼ࢠن໛Ͱͷํ๏ ӷதͰى͜Δ൓ԠΛݻମঢ়ଶͰىͨ͜͢Ίʹɼ,ΧϥΪʔφϯɼΞϧΪ ϯࢎφτϦ΢ϜΛ༻͍ͨɻɹΞϯτγΞχϯɼόχϦϯɼΩταϯΛυʔ ύϯτͱͯ͠ɼ৭ͷมԽɼ೏͍ͷ์ग़ɼܗঢ়มԽΛͤ͞Δɻ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ൣғɼ଎౓ɼՄٯੑΛQ)஋ͷؔ਺ͱͯ͠ಛ௃෇͚ͨ͠ɻQ)ͷ༹ӷͰαϯϓϧΛࢼݧɼ ࢼྉʹQ)༹ӷΛۉҰʹ෾ໄɼס૩ޙɼ෼ޫޫ౓ܭΛ༻͍ͯ$*&- " # ৭஋Λଌఆɻ৭ม Խ଎౓͸ఆੑධՁɻಛఆͷQ)Ԡ౴ͷΈٯసͤ͞Δ͜ͱ͕Ͱ͖Δɻ೏͍ͷมԽ͸ඃݧऀ࣮ݧɻ Q)ʹج͍ͯχΦΠ෺࣭ͷ0/0''Λ໌֬ʹ۠ผͰ͖Δɻมܗʹؔͯ͠͸ۂ͛֯౓Λఆྔධ Ձ J ηϯαɼΞΫνϡΤʔλɼΤωϧΪʔݶͱͯࣗ͠ݾ׬݁ܕͷػೳΛ༗͢Δ JJ ༷ʑͳܗଶͷҼࢠ͓Αͼঢ়ଶͰݱΕΔ JJJ ੜ෺ֶతγεςϜͱిࢠతγεςϜͷ྆ํʹ౷߹Ͱ͖Δ JW ੜମద߹ੑɼੜ෼ղੑɼ৯༻ W ίϯύΫτͰɼॊΒ͔͘ɼϛϡʔτ͞Εɼ߇͑Ί WJ ຯ΍೏͍ΛؚΉ௥ՃͷϞμϦςΟ 3BTNVTTFO ,.FUBM$)*` %FWFOEPSG -FUBM$)* ,BP )TJO-JV$FUBM5&* යࢠҁՖ ਓؒίʔε    -JV 9FUBM") 8FJHFM .FUBM$)*
  89. Shape-Changing Interfaces: A Review of the Design Space and Open

    Research Questions - CHI2012 Majken K. Rasmussen, Esben W. Pedersen, Marianne G. Petersen, Kasper Hornbaek (Aarhus School of Architecture, Univ. of Copenhagen, Aarhus Univ.) "CTU *OUSPEVDUJPO $PODMVTJPO ܗঢ়มԽΠϯλʔϑΣʔεͷମܥతͳ෼ੳɻܗঢ়มߋΠϯλʔϑΣʔεʹؔ͢Δطଘͷ࡞ۀͷྫΛݕ౼͢Δɻػೳ తٴͼշָతͳઃܭ໨తʹ໾ཱ༷ͭʑͳํ๏Ͱมܗ͞ΕͨͭͷλΠϓͷܗঢ়Λಛఆ͢Δɻ B ͲͷΑ͏ͳઃܭ໨ తͰܗঢ়มԽΠϯλʔϑΣʔεΛ࢖༻͢Δ͔ C σβΠϯۭؒͷͲͷ෦෼͕Α͘ཧղ͞Ε͍ͯͳ͍͔ D ܗঢ়มԽΛ ൐͏ϢʔβʔମݧΛݚڀ͢Δཧ༝Λٞ࿦͢Δ ܗঢ়มԽΠϯλʔϑΣʔεͷಛੑͱɼσδλϧ৘ใͱͷΠϯλϥΫγϣϯΛڧԽ͢Δ͜ͱΛ໨ࢦ͍ͯ͠Δɻطଘͷ࡞ۀΛࢹ఺ʹೖΕɼաখධՁ͞Ε ͨํ޲Λಛఆ͢ΔͨΊʹɼܗঢ়มԽΠϯλʔϑΣʔεͷઃܭۭؒΛௐ͍ࠪͯ͠Δ࿦จ͸΄ͱΜͲͳ͍ɻܗঢ়มԽͷ৺ཧతɼܳज़తද໘ʹ͍ͭͯ͸΄ ͱΜͲٞ࿦͞Ε͍ͯͳ͍ɻ૬ޓ࡞༻ʹয఺Λ͋ͯΔ͜ͱ͸΄ͱΜͲͳ͘ɼ૬ޓ࡞༻ͷϞσϧʹܗঢ়มԽΛؔ࿈෇͚Δ͜ͱ͸΄ͱΜͲͳ͍ ܗঢ়มԽΠϯλʔϑΣʔεʹؔ͢Δͷ࿦จΛݕ౼ͨ͠ɻ࿦จ͸ɼૢ࡞͞ΕΔܗঢ়ͷͲͷଆ໘ ܗঢ়ɼମੵͳͲ ͓Αͼܗঢ়ؒͷม׵͕ͲͷΑ͏ʹୡ੒͞Ε ͔ͨʹؔͯ͠෼ੳ͞Εͨɻܗঢ়มԽͷ໨తɿଟ͘ͷΠϯλʔϑΣʔε͸৘ใ఻ୡΛ໨తͱ͍ͯ͠Δɻܗঢ়มԽ͕ਖ਼֬ͳίϛϡχέʔγϣϯͷͨΊͷྑ͍Ϟμ ϦςΟ͔Ͳ͏͔ͱ͍͏ٙ໰ʹ౴͍͑ͯΔ࿦จ͸كɻ͞·͟·ͳλΠϓͷม׵͕ͲͷΑ͏ʹ࢖༻͞ΕɼͲͷΑ͏ͳޮՌ͕΋ͨΒ͞ΕΔ͔Λମܥతʹௐ΂Δ͜ ͱ͕Ͱ͖ͳ͔ͬͨɻͷ࿦จ͸Ϣʔβʔମݧʹ͍ͭͯධՁ͍ͯ͠ΔɻϢʔβʔମݧͷ֓೦Խͱݚڀʹ͓͚Δ࠷৽ͷਐาΛ౿·͑ͯ࡞੒͞Εͨ΋ͷ͸΄ͱΜ Ͳͳ͍ɻ යࢠҁՖ ਓؒίʔε   
  90. “I don’t want to wear a screen”: Probing Perceptions of

    and Possibilities for Dynamic Displays on Clothing - CHI2016 Laura Devendorf, Joanne Lo, Noura Howell, Jung Lin Lee, Nan-Wei Gong, M. Emre Karagozler, Shiho Fukuhara, Ivan Poupyrev, Eric Paulos, Kimiko Ryokai (UC Barkeley, Google ATAP) "CTU *OUSPEVDUJPO $PODMVTJPO μΠφϛοΫςΩελΠϧσΟεϓϨΠ͕Ռͨ͢໾ׂΛ୳͍ͬͯΔɻ&CCͱݺ͹ΕΔ৽͍͠ςΩελΠϧσΟεϓ ϨΠٕज़Λ։ൃ͠ɼҥྨݻ༗ͷσβΠϯͷՄೳੑΛ୳ٻ͍͔ͨͭ͘͠ͷ৫Γͱ͔͗ฤΈͷ෍ݟຊΛ࡞੒ͨ͠ɻैདྷ ͷεΫϦʔϯϕʔεͷσΟεϓϨΠͱ͸ඇৗʹҟͳΔج४ʹैͬͯɼҥྨϕʔεͷσΟεϓϨΠͷັྗͱ༗༻ੑΛ ධՁͨ͠ɻ ٕज़͕࣍ୈʹ਎ʹ͚ͭΒΕΔΑ͏ʹͳΓɼεϚʔτͳΞΫηαϦͷྖҬΛ཭Εɼ෰ͷ෍஍ʹೖΓࠐΉʹͭΕɼ)$*Ͱ͸ٕज़త ͳσΟεϓϨΠ͕ݸਓతͳελΠϧͷதͰҭΉݸਓతͳҙຯͱࣾձతػೳΛߟྀ͢Δ͜ͱ͕ॏཁɻ͜ΕΒͷҙຯΛௐ΂ΔͨΊ ʹ&CCΛ։ൃ͠ɼσβΠφʔʹ࿅श΍ݸਓతελΠϧ΁ͷ૊ΈࠐΈํ๏Λઆ໌͢ΔΑ͏ґཔͨ͠ɻ ҥ෰ϕʔεͷσΟεϓϨΠ͕ɼෳࡶͰҙຯͷ͋ΔݸਓతͳελΠϧͷγʔϯͷதͰػೳ͢Δ͜ͱ͕Ͱ͖Δํ๏Λ໌Β͔ʹͨ͠ɻҙຯͷ͋Δίϛϡ χέʔλͱͯ͠ͷࡐྉΛऔΓೖΕͨϚςϦΞϧத৺ͷࢹ఺Λ࠾༻͢Δ͜ͱͰɼҥ෰ʹςΫϊϩδʔͷೝࣝΛܗ࡞ͬͨ࿈૝ΛҾ͖ग़͢͜ͱ͕Ͱ͖ ͨɻΩϟϯόεͷӅᄻ͕೔ৗ࢖༻ͷͨΊͷҥྨϕʔεͷσΟεϓϨΠͷઃܭεϖʔεΛ֦େ͠͏Δɻ&CCͷ஗͞ͱ௿ղ૾౓͕ࢥ͍͕͚ͳ͍ࣾձ తૺ۰ɼൽ೑ͳղઆɼݸਓσʔλͷᛉ૝ܦݧΛଅਐ͢ΔͨΊʹैࣄͰ͖ΔγφϦΦΛ૝ఆͨ͠ɻ යࢠҁՖ ਓؒίʔε   
  91. clayodor: Retrieving Scents through the Manipulation of Malleable Material -

    TEI2015 Cindy Hsin-Liu Kao, Sang-won Leigh, Ken Perlin, Ermal Dreshaj, Xavier Benavides, Hiroshi Ishii, Juditj Amores, Pattie Maes (MIT Media Lab, NYU Media Research Lab) "CTU *OUSPEVDUJPO $PODMVTJPO ΫϨΦυʔϧ͸೪౔ͷΑ͏ͳՄ஁ੑͷ͋Δ෺࣭ͰɼϢʔβʔ͕ͦͷܗঢ়Λૢ࡞ͨ͜͠ͱʹج͍ͮͯ೏͍͕มԽ͢Δɻ ܗঢ়มԽૉࡐͷ༗ܗੑΛ୳ٻ͠ɼҰ࣌త͔ͭແܗͷײ֮ೖྗͰ͋Δʹ͓͍Λิ଍͢Δɻ֓೦࣮ূϓϩτλΠϓͷ ઃܭΛఏࣔ͠ɼϑΥʔϜΛհͯ͠ʹ͓͍ΛφϏήʔτ͢Δ՝୊ʹ͍ͭͯٞ࿦͢Δɻ ࠷ۙͷ)$*ͷݚڀ͸ɼ੩తͰ͔͍ͨ෺ཧతΠϯλʔϑΣʔεΛӽ͑ͯɼಈతʹ੍ޚ͞ΕΔϚςϦΞϧʹҠߦͨ͠ɻలੑͷ͋Δແܗͷ ηϯαʔೖྗͰ͋Δ೏͍ΛัΒ͑ΔͨΊʹɼలੑͷ͋ΔࡐྉΛܗ࡞Δ͜ͱͷ༗๬ੑΛ୳ΔɻϢʔβʔ͕ࡐྉΛखʹ࣋ͬͯɼ༷ʑͳ ҙຯͷ͋Δܗʹ෺ཧతʹܗ࡞Δ͜ͱΛՄೳʹ͢Δ͜ͱͰɼܗΛʹ͓͍Λ݁ͼ͚ͭΔજࡏతͳਫ਼ਆϞσϧΛ୳ٻ͢Δ͜ͱΛ໨ࢦ͢ɻ ॊೈͳ৮֮ΠϯλʔϑΣʔεΛૢ࡞ͯ߳͠ΓΛݕࡧ͢ΔϓϩτλΠϓγεςϜΛ঺հͨ͠ɻѹྗ׬࣏ٕज़ͱ߳Γ߹ ੒ٕज़Λ༥߹ͤ͞Δ͜ͱͰɼզʑ͸༗ܗͷ૬ޓ࡞༻Λհͯ͠ҟͳΔ߳ΓΛհ͖ͨ͠Ίࡉ͔ͳφϏήʔγϣϯͷՄೳ ੑΛ໛ࡧͨ͠ɻ֤ϋʔυ΢ΣΞϞδϡʔϧͰߏ੒͞ΕΔϞδϡϥʔϒϩοΫΛ࡞੒͢Δ͜ͱ͕ϑϡʔνϟʔϫʔΫɻ යࢠҁՖ ਓؒίʔε   
  92. Wearability Factors for Skin Interfaces - AH2016 Xin Liu, Katia

    Vega, Pattie Maes, Joe A. Paradiso (MIT Media Lab) "CTU *OUSPEVDUJPO $PODMVTJPO ΢ΣΞϥϒϧΠϯλʔϑΣʔε͸ண༻ೳྗ͚ͩͰͳ͘ɼσόΠε͕զʑͱͲͷΑ͏ʹަྲྀ͢Δ͔ͱ͍͏఺ͰɼςΫϊϩδʔͱϑΝογϣϯͷ༥߹Λ࠶ߟ͢Δ ͜ͱʹͭͳ͕Δɻηϯα΍ଞͷίϯϐϡʔςΟϯάσόΠεΛ਎ମද໘ʹ௚઀औΓ෇͚Δ͜ͱͰɼ΢ΣΞϥϒϧΛεΩϯΠϯλʔϑΣʔεͱͯ͠ઃܭ͢Δ͜ ͱ΋Ͱ͖Δɻ΢ΣΞϥϒϧʹӨڹΛٴ΅͢΢ΣΞϥϏϦςΟͷཁҼΛεΩϯΠϯλʔϑΣʔεͷ؍఺͔Βݕ౼͢Δɻ΢ΣΞϥϏϦςΟཁҼ͸਎ମతଆ໘ͱ σόΠεͷଆ໘Ͱ෼ྨ͞ΕΔɻಛघޮՌϝΠΫʹຒΊࠐ·ΕͨϦδουͳϘʔυͱɼσόΠεʹ઀ଓ͞ΕͨεΩϯϚ΢ϯτ͞ΕͨॊΒ͔͍ϚςϦΞϧͱ͍ ͏ͭͷΠϯλʔϑΣʔεͷྫͰઆ໌͢Δɻ ண༻Մೳͳٕज़͸ɼҥ෰΍ΞΫηαϦʔʹݶఆ͞ΕΔ΂͖Ͱ͸ͳ͍ɻൽෘͱ൅΍௺ʹٕज़Λஔ͘͜ͱ͸ɼ਎ମ಺૷ஔͷ৽͍͠ՄೳੑΛ։͘ɼൽෘ΁ ͷ௚઀઀৮͸ɼੜ෺తηϯγϯάσʔλΛ༗ҙʹվળ͢Δ͜ͱ͕Ͱ͖Δɻ֎తγεςϜΛઈ͑ͣվળ͢Δ΢ΣΞϥϒϧͱ͸ҟͳΓɼൽෘΠϯλʔ ϑΣʔε͸ɼண༻ࣗ਎ͷ਎ମΛΠϯςϦδΣϯτ͔ͭ૿େͤ͞Δɻ΢ΣΞϥϒϧ΢ΣΞͷ΢ΣΞϥϏϦςΟϑΝΫλΛεΩϯΠϯλʔϑΣʔεͷͦ ΕʹϚοϐϯά͢Δɻ ΢ΣΞϥϒϧ΢ΣΞͷ΢ΣΞϥϏϦςΟʹ͍ͭͯใࠂ͞Ε͍ͯΔ࠷΋ҰൠతͳཁҼΛಛఆ͠ɼͦΕΒΛεΩϯΠϯλʔϑΣʔεͷ؍఺͔ Β෼ੳͨ͠ɻ਎ମతଆ໘ͱσόΠεతଆ໘ʹ͓͚Δண༻ՄೳੑͷཁҼΛ෼ྨͨ͠ɻεΩϯΠϯλʔϑΣʔεઃܭऀͷͨΊͷҰ࿈ͷ෯޿͍ ΨΠυϥΠϯΛఏڙ͢Δ͜ͱΛ໨తͱ͍ͯ͠Δɻɹ૷ஔ͕਎ମʹ઀৮͢Δ͜ͱʹΑΓɼΑΓਖ਼֬ͳ৽͍͠σʔλ͕ݕग़͞ΕΔՄೳੑ͕͋ Δɻ යࢠҁՖ ਓؒίʔε   
  93. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for

    Mobile Computing - CHI2015 Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, Jurgen Steimle (Saarland Univ., Carnegie Mellon Univ., CNRS LTCI, Aalto Univ.) "CTU *OUSPEVDUJPO $PODMVTJPO ਎ମͷλονೖྗ༻ͷൽෘຎ໣ηϯαʔͷ৽͍͠ΫϥεͰ͋ΔJ4LJOΛఏҊɻੜମద߹ੑࡐྉͰ࡞ΒΕͨඇৗʹബ ͍ηϯαʔΦʔόʔϨΠͰɼॊೈͰ৳ॖੑ͕͋Δɻ਎ମͷ༷ʑͳ৔ॴʹద߹͢ΔΑ͏ʹɼҟͳΔܗঢ়ٴͼαΠζͰ ੡଄͢Δ͜ͱ͕Ͱ͖ΔɻϞόΠϧίϯϐϡʔςΟϯάͷͨΊͷɼ௚઀తɼਝ଎͔ͭ৻ॏͳೖྗΛଅਐ͢Δɻ ൽෘ্ʹ௚઀ஔ͘͜ͱ͕Ͱ͖ΔλονηϯαΛઃܭ࣮͠૷͢Δ͜ͱ͸ࠔ೉Ͱ͋ͬͨɻਓؒͷίϯϐϡʔλ্ͰͷਓؒͱίϯϐϡʔλͱͷΠϯ λϥΫγϣϯͷͨΊͷΠϯλʔϑΣʔεͰ͋ΔJ4LJOΛఏҊɻΠϯλϥΫςΟϰͳ໘͸ৗʹར༻ՄೳͰελϯυΞϩʔϯ·ͨ͸ଞͷϞόΠϧσ όΠεͷೖྗαʔϑΣʔεͱͯ͠ૉૣ͘৻ॏʹૢ࡞Ͱ͖Δɻؔ࿈࡞ۀͷϨϏϡʔɼηϯαͷ࣮૷ํ๏ɼΞϓϦέʔγϣϯϨΠͱධՁௐࠪͷ݁ ՌΛࣔ͢ J4LJO͸ɼ߶ମηϯαʔ΍ίϯϐϡʔλϏδϣϯϕʔεͷղܾ๏ʹ༏ΔɻൽෘͷλονೖྗΛαϙʔτ͍ͯ͠Δɻઃܭ͸ɼಛఆ ͷΞϓϦέʔγϣϯ΍ϘσΟͷҐஔɼ๬·͍͠֎؍ɼϘλϯͷϨΠΞ΢τʹର͢ΔλονηϯαͷΧελϚΠζΛαϙʔτ͢ Δɻ͜ΕʹΑΓɼਓࠩ͠ࢦ΍ࣖͷޙΖͷΑ͏ͳඇৗʹ௅ઓతͳ਎ମ෦෼΁ͷΞϓϦέʔγϣϯΛ͍ͤ͘͢͞Δ͜ͱ͕Ͱ͖ͨɻ යࢠҁՖ ਓؒίʔε   
  94. 2 K•Ž¯HIGH-CONTRAST COMPUTATIONAL CAUSTIC DESIGN ªSIGGRAPH 2014«ªTOG« |— cpL /*;@?Anx¦LJ

    &q # Ÿu‡Fh‰& % '<-;09rz­ o ¬Ÿu‡F/*;@?E“ ˜g&€^¬=)4=@.?+ #/*;@?Atb†gOe&  %­}1@/–§ $/*;@ ?AZs826& ¬v U™ ‘&%­vi 826j =?0h‰& %­ 826Šm'<-;097>5)O P&‹%­ {› K•Ž~ž ƒ$ ¡  ¬…¤H&% L`g&!ˆ„¬]N©Yn &WMRŒJawT%­ DB!&_¥G{›­ C£,@/  lX:3('Qm\¨®f ¢yI[  Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, and Mark Pauly œ ™‘,/4 %V”k %­ Sd’g"L‚š^#" %­
  95. 3 4e 3#  D:.(8F=hl@ dM5<  #%-0,1%2#Q]JYea6Ai !3,3#PZHRKOk C[9?I^fW\E

    .$&*KO> ck GL_g;`XTV_g9?"#'- KOk bS   7U jBN +/)7 U>ck
  96. 4 *R)  ;3%0=5UY8 QC,4  V2M +< 69SA#()! F/7

    G=VN W)&#( ('$ @DX JA PE:) (  W>B T.H -G=)") LK1IO?E @DX
  97. 5 'J&  80#,93LO5 I;(2  +6-D 1F>7:=?&!  @9/K4

    M"$EHBC MA "%&)G*L< *L N0. N
  98. 7/FDU3FBMUJNF%)VNBO1PTF&TUJNBUJPOXJUIB4JOHMF3(#$BNFSB         

                     —Š‡ƒJN£ 8W›œ•~ITV™ª|I‹;W0˜Nda xjyTVv\wg]qIjuh_y`BWNM‰9HW0 ŒM QP>RN  M8W )#)$** ,%&'**+"%+"'&& )#"& *'&%)* &.()"%&+$-$,+"'&  kwkw4“€b3d5 S¦N_sO2 —Š‡ƒNi3gfhjZ‹9/    I6Ict]yjZG?/7MAH9W0 K[LRN2 ^ruE?Z‹FH0“€N7daxjyZv\wg ]qIŽB0…€¡Nzš’¤RY<W0¢‘M{©AS B90 ‚« domNu]ldjv3py`LKII>D0 $"&INJžN–œ0CAH/M„ 9–œIjuh_y`I>D0 ¨ˆ”N§ n3eZJFD“Z#"&+1('*) )**"'& %+!''!++$ J@N¥¦INjuh_y `Z£AHCXLVM•~J9:†}=ŸUXD0 " )(! 
  99. MatchPoint: Spontaneous Spatial Coupling of Body Movement for Touchless Pointing

    8,67d Christopher Clarke, Hans Gellersen ʹΞ͵΍͹ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ਑౪प৷ःॊ੟৬पेॊૻຎؚใோু১धभএॖথॱ୎ ৿ৎ৑भૻຎ॑ষढञ؛ ੟৬ऊैਵखञু॑ෙढथ୯඄घॊਖ਻ऋோ૔घॊञीؚ ୦भ੟৬ऩभऊ॑ੳ௙औचॊ૑ਏऋँॊ؛ Orbits 201713110 ᱎઢၲᆓ #2 (য৑॥ش५) ਐۛͶ͍Ζ෼ରΏਐର͹Ҳ෨ΝྡؽԢรͶϛ΢ ϱν੏ޜͶ༽͏Ζϛ΢ϱτΡϱήघ๑ घΏࢨ͹ಊ͘͹खಚͶϛ΢ϱτΡϱήͲϜʖΩ ΏήϫʖϔɼϪʖδϛ΢ϱνΝචགྷͳ͢͵͏ υΡηϕϪ΢৏ͶݳΗΖνʖΰρφͳಋͣಊ͘ ΝͤΖ෼ରΝΩϟϧͲखಚͤΖ
  100. 2UELWV*D]H,QWHUDFWLRQIRU6PDUW:DWFKHVXVLQJ6PRRWK3XUVXLW(\H0RYHPHQWV8,67d Augusto Esteves1 , Eduardo Velloso2 , Andreas Bulling3 ,

    Hans Gellersen4 201713110 ᱎઢၲᆓ #2 (য৑॥ش५) Ϥʖδ͹໪͹ಊ͘ͶΓͮͱɼηϜʖφΤΧρο͹ύϱθϓϨʖ೘ྙΝՆ೵ͶͤΖٗढ़Ͳ͍Ζɽ ͞͹ٗढ़ͺηϜʖφΤΧρο͹ڳ͏ժ໚ͳ࣎ܯͳ͢ͱ͹ࣙષ͵ݡͪ໪ͶଲԢ͢ͱ͏Ζɽ OrbitsΝ༽͏ͪԽֺϕϪ΢Ϣʖɼ௪எϓΥ΢ηϕϪʖφɼ෈ࡑ஥৶ϟωϣʖΝࡠ੣ͪ͢ɽ
  101. 3HUVRQDO6SDFH8VHU'HILQHG*HVWXUH6SDFHIRU*8,,QWHUDFWLRQ&+,d Alvin Jude , G. Michael Poor , Darren Guinness

    201713110 ᱎઢၲᆓ #2 (য৑॥ش५) εητϞͶ߻ΚͦͱϤʖδ͗ζΥηοϡΝߨ͑͹Ͳͺ͵͚ɼϤʖδ͗ఈ࣏ٝͪ̑͢ݫۯؔͲζΥη οϡ೘ྙΝߨ͑ݜڂͲ͍ΖɽβϨϧΠʖϞεϱχϫʖϞΝմ݀ͤΖͪΌͶϤʖδͺඞΝطͶ஖͚͞ ͳ͗Ͳ͘ΖɽΩʖλϩ૤ࡠ͹ͪΌ͹ζΥηοϡͳർֳ͢ɼ඲Ճͪ͢ɽ
  102. 3RUWLFR7DQJLEOH,QWHUDFWLRQRQDQGDURXQGD7DEOHW8,67d Daniel Avrahami1,2, Jacob O. Wobbrock2 and Shahram Izadi3 201713110

    ᱎઢၲᆓ #2 (য৑॥ش५) PorticoͺνϔϪρφ৏͕Γ;बวͲ͹νϱζϔϩ΢ϱνϧέεϥϱΝՆ೵ͶͤΖεητϞͲ͍Ζɽ υΡηϕϪ΢͹৏Ͷ͍Ζ̐ͯ͹ΩϟϧͶΓͮͱ෼ରΝࣟพͤΖɽ
  103. MultiPoint: Comparing Laser and Manual Pointing As Remote Input in

    Large Display Interactions Int. J. Hum.-Comput. Stud. 70 Amartya Banerjee, Jesse Burstyn, Audrey Girouard, and Roel Vertegaal 201713110 ᱎઢၲᆓ #2 (য৑॥ش५) ϪʖδΝ༽͏ͱघΏࢨ͹ಊ͘ΝͳΔ͓ɼԗ๏͹ηέϨʖϱͶԗۛ๑Ν༽͏ͱҒ஖Ν౦ӪͤΖ
  104. Full 3D Reconstruction of Transparent Objects Bojian Wu, Yang Zhou,

    Yiming Qian, Minglun Gong, Hui Huang ʹΞ͵΍͹ʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ಃ໎͵ΨϔζΥέφ͹3࣏ݫ͹ܙয়ΝࣙಊదͶϠυϩԿͤΖघ๑ɽ 201813559 ஓീ ֋౉ #2 (෻αʖη) ࠹ॵͶΨϔζΥέφ͹୉Ή͖͵ܙয়ΝϠυϩԿͪ͢ϧϓϠυϩΝ ࡠ੔͢ɼΨϔζΥέφͳިࠫͤΖޭત͹ଲԢؖܐΝ༽͏ͱɼϧϓ ϠυϩΝ࠹నԿ͢ͱ͏͚ɽ ϠυϩԿͪ͢΍͹ͳɼࣰࡏ͹ΨϔζΥέφͳ͹න໚͹ړ཯͹ޣࠫ Νܯ଎ͪ͢ɽ SIGGRAPH 2018 ॊཔݜڂͲͺಃ໎͵ΨϔζΥέφ͹2ͯ͹໚͹఼܊Νਫ਼੔ͤΖ͞ͳ ͺड़པͪ͗ɼͨ͹ܙয়ͺ෈׮સͫͮͪɽ͞͹घ๑Ͳͺɼ׮સ͵̑D ϠυϩΝ෰ݫͤΖ͞ͳ͗Ͳ͘Ζɽ ஦ۯ͹ಃ໎͵ΨϔζΥέφͺॴཀྵͲ͘͵͏ɽ ΨϔζΥέφͶଲ͢ͱɼޭત͹۸઄͹յ਼͗ଁ͓Ζͳޣࠫ͗୉͘ ͚͵Ζɽ Qian et al. 3D Reconstruction of Transparent Objects with Position-Normal Consistency. [2016]
  105. MonoPerfCap: Human Performance Capture from Monocular Video WEIPENG XU, AVISHEK

    CHATTERJEE, and MICHAEL ZOLLHÖFER, Max Planck Institute for Informatics HELGE RHODIN, EPFL DUSHYANT MEHTA, HANS-PETER SEIDEL, and CHRISTIAN THEOBALT, Max Planck Institute for Informatics ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 201813564 ౔԰༏അ #2 (෹ίʔε) SIGGRAPH 2018 ୯؟ΧϝϥͰࡱӨ͞Εͨө૾Λجʹɼਓؒͷϙʔζ͔ Βண༻͢Δҥ෰·ͰΛ3D࠶ߏங͢ΔϚʔΧϨεύ ϑΥʔϚϯεΩϟϓνϟٕज़ͷఏҊ ୯؟ΧϝϥʹΑͬͯࡱӨ͞Εͨө૾ͷΈΛೖྗͱ͠ ͨॳΊͯͷ3DύϑΥʔϚϯεΩϟϓνϟٕज़Ͱ͋ Δɽ Sparse 2Dͱbatchϕʔεͷ࢟੎ਪఆख๏Λ༻͍ͨCNN ʹΑΔਓؒͷ3D࢟੎ݕग़Λ࠾༻͍ͯ͠Δɽ ߹ܭ120ຊͷϏσΦΫϦοϓΛ༻͍ͯϕϯνϚʔΫΛ ߦͬͨɽ࣭తͳݕূͰ͸ɼશͯͷϕϯνϚʔΫσʔ ληοτʹର͠ɼ׬શͳ݁ՌΛಘͨɽ ࠷దԽ͞Ε͍ͯͳ͍CPUίʔυͰ͸ҰͭͷೖྗϑϨʔ ϜΛॲཧ͢Δͷʹ໿1.2෼Λཁ͕ͨ͠ɼdata parallel optimizationΛ༻͍Δ͜ͱͰେ෯ʹվྑͰ͖Δɽকདྷ తʹ͸ϦΞϧλΠϜॲཧΛ໨ࢦ͢ɽ Robertini et al. 2016
  106. MonoPerfCap: Human Performance Capture from Monocular Video WEIPENG XU, AVISHEK

    CHATTERJEE, and MICHAEL ZOLLHÖFER, Max Planck Institute for Informatics HELGE RHODIN, EPFL DUSHYANT MEHTA, HANS-PETER SEIDEL, and CHRISTIAN THEOBALT, Max Planck Institute for Informatics ʹΞ͵΍͹ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ 201813564 ౖԲ༑ഇ #2 (෻αʖη) SIGGRAPH 2018 ୱءΩϟϧͲࡳӪ͠Ηͪӫ଀ΝخͶɾਕؔ͹ϛʖθ ͖Δ஥༽ͤΖҧෲΉͲΝ3D࠸ߑ஛ͤΖϜʖΩϪηϏ ϓΧʖϜϱηΫϡϕοϡٗढ़͹఑Ҍ ୱءΩϟϧͶΓͮͱࡳӪ͠Ηͪӫ଀͹ΊΝ೘ྙͳ͢ ͪॵΌͱ͹3DϏϓΧʖϜϱηΫϡϕοϡٗढ़Ͳ͍Ζɿ Sparse 2Dͳbatchϗʖη͹ࢡ੐ਬఈघ๑Ν༽͏ͪCNN ͶΓΖਕؔ͹3Dࢡ੐ݗड़Νࡀ༽͢ͱ͏Ζɿ ߻ܯ120ຌ͹ϑυΨέϨρϕΝ༽͏ͱϗϱοϜʖέ Νߨͮͪɿ࣯ద͵ݗৄͲͺɾસͱ͹ϗϱοϜʖέ υʖνιρφͶଲ͢ɾ׮સ͵݃ՎΝಚͪɿ ࠹నԿ͠Ηͱ͏͵͏CPUαʖχͲͺҲͯ͹೘ྙϓ ϪʖϞΝॴཀྵͤΖ͹Ͷ༁1.2෾Νགྷͪ͗͢ɾdata parallel optimizationΝ༽͏Ζ͞ͳͲ୉෱ͶրྒྷͲ͘ ΖɿগཔదͶͺϨΠϩν΢ϞॴཀྵΝ໪ࢨͤɿ Robertini et al. 2016
  107. 201611432 Ԯ෨ཀྵँࢢʤ෻αʖηʥ Reference Data for Polysomnography-Measured and Subjective Sleep in

    Healthy Adults. ॽ͏ͱ͍Ζ಼༲ ݊৙੔ਕ͹ਯເͶؖͤΖυʖνΝͳͮͱ ೧ྺʀ੓พͺਯເͶӪڻͤΖ͹͖ߡࡱͪ͢ ࣏Ͷಣ΋΄͘࿨ช ஦ࠅਕາमָࣉ͹ਯເϏνʖϱͶؖͤΖ ࿨ช͍͗ͮͪ͹ͲɼชԿ͹ҩ͏Ͳਯເ͗ รΚΖ͹͖ɼಣΞͲΊͪ͏ͳ͕΍͏Ή͢ ͪʄ Κ͖ͮͪ͞ͳ ೧ྺ͗߶͚͵ΖͶͯΗͱɼਯເͺΓΕ୻͚ ͵ͮͪɽ Ήͪɼঃ੓͹ਯເͺ஋੓͹ਯເΓΕ਄͏͞ ͳ͗෾͖ͮͪɽ ΍ͮͳਜ਼͢͏υʖνΝಚΖͪΌͶ ୉وໝ͵ࠅࡏదυʖνϗʖη͹ܙସΝͳΖ චགྷ͍͗Ζɽ ͞͹υʖνͫ͜Ͳͺक؏ద͵υʖνʄʄ Ӏ༽ݫʂhttp://jcsm.aasm.org/ViewAbstract.aspx?pid=31232
  108. Full 3D Reconstruction of Transparent Objects Bojian Wu, Yang Zhou,

    Yiming Qian, Minglun Gong, Hui Huang ʹΞ͵΍͹ʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ಃ໎͵ΨϔζΥέφ͹3࣏ݫ͹ܙয়ΝࣙಊదͶϠυϩԿͤΖघ๑ɽ 201813559 ஓീ ֋౉ #2 (෻αʖη) ࠹ॵͶΨϔζΥέφ͹୉Ή͖͵ܙয়ΝϠυϩԿͪ͢ϧϓϠυϩΝ ࡠ੔͢ɼΨϔζΥέφͳިࠫͤΖޭત͹ଲԢؖܐΝ༽͏ͱɼϧϓ ϠυϩΝ࠹నԿ͢ͱ͏͚ɽ ϠυϩԿͪ͢΍͹ͳɼࣰࡏ͹ΨϔζΥέφͳ͹න໚͹ړ཯͹ޣࠫ Νܯ଎ͪ͢ɽ SIGGRAPH 2018 ॊཔݜڂͲͺಃ໎͵ΨϔζΥέφ͹2ͯ͹໚͹఼܊Νਫ਼੔ͤΖ͞ͳ ͺड़པͪ͗ɼͨ͹ܙয়ͺ෈׮સͫͮͪɽ͞͹घ๑Ͳͺɼ׮સ͵̑D ϠυϩΝ෰ݫͤΖ͞ͳ͗Ͳ͘Ζɽ ஦ۯ͹ಃ໎͵ΨϔζΥέφͺॴཀྵͲ͘͵͏ɽ ΨϔζΥέφͶଲ͢ͱɼޭત͹۸઄͹յ਼͗ଁ͓Ζͳޣࠫ͗୉͘ ͚͵Ζɽ Qian et al. 3D Reconstruction of Transparent Objects with Position-Normal Consistency. [2016]
  109. Silicone Devices: A Scalable DIY Approach for Fabricating Self-Contained Multi-Layered

    Soft Circuits using Microfluidics 201611447 ੜ༐ื #2 (෻αʖη) Steven Nagels , Raf Ramakers , Kris Luyten , Wim Deferme ʹΞ͵΍͹ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ৵क़੓͹͍Ζಢཱིͪ͢ιϱγΝࡠΖघ๑Ώɼ৵क़੓ો ࡒͶుࢢ෨඾ΝດΌࠒ΋घ๑ͺଚࡑͪ͗͢ɼ෵ࡸ͵յ ࿑΃͹Ԣ༽ͺͲ͘͵͖ͮͪɽຌघ๑Ͳͺଡ૜յ࿑΃Ԣ ༽Ͳ͘ΖͪΌɼࣙހ׮݃ܗ͹৵क़੓εϨαϱυώ΢η ࣰ͗ݳͲ͘Ζ յ࿑͹φϪʖηͶӹରۜ଒Ν༽͏Ζ͞ͳͲɼ৵क़੓ͳ ༢಍੓Νಋ࣎Ͷࣰݳͪ͢ɽ εϨαϱΝ༽͏ͱɼ৵क़੓ͳौೊ੓Νඍ͓ͪଡ૜յ࿑ ΝDIYͤΖ๏๑͹఑Ҍ ༢ు੓ͳࣙހյ෰੓Ν඲ՃͤΖͪΌͶɼ৵क़յ਼ͳ৵ क़ྖɼͨΗͶͳ΍͵͑ఏ߇஍͹รԿΝ؏ࡱͪ͢ɽ ಍ు੓ϏρχΝ౹߻ͤΖͫ͜͹΍͹ͳർ΄Ζͳ޲͚͵ Ζ͗ɼമ͏෨඾Ν࢘͑͵ʹͤΗͻ޲͠Ν࠹నԿͲ͘Ζɽ ࡠۂஊ֌͗ଡ͚͖͖࣎ؔ͗Ζ͹Ͳɼٗढ़͗චགྷɽ Michael Wessely, Theophanis Tsandilas, and Wendy E. Mackay. Stretchis: Fabricating Highly Stretchable User Interfaces.
  110.          

     $'"&$'" , $'"0,' $  $. $ , #$"'"  '" $''" ,'#(, # '"1#(,'$- )*$+0 ++  0(!# %$'"'$- )*$+0 '$- )*$+0(!(,*+(' '$- )*$+0(! . /$( HUIOK3 t{fox5ƒ¡9Q¸4I v[lcu T“ž@Rwiz}^`bhuT›MR ŸŒ‰G­MEH<:@=73 ˆšP™´K\wLH<3 H8PCE·BG‹œ?A3 ‚£L6R3 ˜J¬NM;½³L3   ¶µ„®  ±_5b °”Iv[lcuT²†?E‡º@R<G ¢—©ƒ¡9Q¸4Iv[lcuZqaY] jT§J‘ŽžF;R W}ey]hVq wiz}^G…»§~ «nyv5e¦K DKbhgrT–¹ # ' +& ¤T’¨€?2 sW}j]yXki5e KŽ¥FŠ•>SAª¼T–¹?Ep] d{K^|5m{¯G¯TŠ•@R
  111. ʹΞ͵΍͹ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ٗढ़͹घ๑ΏΫϠͺʹ͞ʃ ಊ෼Ώਕؔ͹໡͹ϪϱξϨϱήΝਜ਼͖֮ͯްིదͶ ߨ͑घ๑ ໡͹ϪϱξϨϱήͺ[Yan et

    al. (2005)]͵ʹ͹Ϡυ ϩ͍͗Ζ͗ɼ؈ྲྀԿ͠Η͙ͤͱ͏ͪΕɼ෵ࡸ͙ͤͪ Εۅ୼ͫͮͪɽ͞͹࿨ชͲͺϠυϩ͹؈ྲྀԿΝߨ͏ ͯͯਜ਼֮͵ϪϱξϨϱήΝࣰݳ ܯࢋΝकགྷ͵5ߴͶߞΕɼേ͹஦ৼ෨Ͳ͹ൕ ࣻʀ۸઄Ν঴ྲྀͯͯ͢΍ࢆཛྷޭ͹ٷफްՎͺ ࢔ͤɽԗړ཯ඵժͲ͹࠹నԿͶ΍ଲԢ ֱౕ͟ͳ͹ൕࣻΝεϝϣϪʖεϥϱ͢[Yan et al.(2005)]͹ࣰ଎υʖνͳεϝϣϪʖεϥϱ ͳޣࠫΝർֳɽϪϱξϨϱή݃ՎͲ͹ർֳ ؈ྲྀԿͶΓͮͱऑױ੠ౕ͗ଝ͵ΚΗΖ͗֕͸ ྒྷ޹ɽਕ͹േͺ઎ߨݜڂͲ΍͞͹࿨ชͲ΍࠸ ݳ͗ೋ͢͏ɽ Yan et al. (2015), Marschner et al. (2003) James Kajiya and Timothy Kay. (1989) 201511455 ௗԮಠ࢛ #1 (෻αʖη) ACM Transactions on Graphics, Vol. 36, No. 4, Article 67. Publication date: July 2017. SIGGRAPH 2017
  112.      '%('! "'! "$ #'''#& "'∗

    &+,-#(5'#.*+#,1( "'(%(!11'1 -'*/,* "&(-',#+)%1 "+,*-,-*(  -'*/,* !(!!% QdR[T6 ­¶cœÁO¾¤†¿R„R—Íc›LN¡“G`4 €¯T‘Ž¢?­¶OT T¡³cXJ?UR >LJ4WJ3PN[jlr?>>`JZ3À¸S¥ A¾a^a`[TOUR>LJ4 Œ§\¤ÉTgxUQB6 qselT±—8lf7r\lrzov9c‹´Tl gy7sneu}iwlh>^£_‰E3š_Tt7p c: v{}mO‚˜G` ®–‘ŽPÂVNQB?GC<6 Q=\LN˕KP©EJ6 ½v7|Ok7i|cMAJ™…¢cŸÌSº @ˆ^HJ4IT‡3°O>MĒ¢?»Fƒ ²ªÊc¡“G`0-+ \-%-+# ,]_[ÃÎ Š\~«cŠF`BP?¨R>LJ4 ÏU;`6 ™…¢?Ålgy7snes7S”·DaN<`R Q3WK©?¦ÇOUR<PBb4 žS¼YV@ÏÈU6 ),#&#2 1+,& (*'*/,* 0)*#'   ¬¹µ 8Æj7l9
  113. 7KH8,679LGHR%URZVHU&UHDWLQJ6KDUHDEOH3OD\OLVWVRI9LGHR3UHYLHZV &DUOD)*ULJJLR 1DP*LDQJ *HUPÄQ/HLYD :HQG\(0DFND\ 2FWREHU8,67 $GMXQFW3URFHHGLQJVRIWKHWK$QQXDO6\PSRVLXPRQ8VHU,QWHUIDFH6RIWZDUHDQG7HFKQRORJ\ ʹΞ͵΍͹ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ

    ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ٠࿨ͺ͍Ζʃ ࢂՅंͶ8,67ϑυΨϕϪϑϣʖ͹ಢࣙ͹ϕϪ΢ ϨηφΝࡠ੔͢ͱڠ༙ͤΖ:HEΠϕϨίʖεϥ ϱͲ͍Ζ8,679LGHR%URZVHU͹়ղɽ ηίζϣʖϩΏճ٠ΝනࣖͤΖͫ͜Ͳ͵͚ɼࣙ෾ ͹ηίζϣʖϩͳ߻ΚͦΖ͞ͳ͗Ն೵ɽ મ୔ͪ͢ϑυΨϕϪϑϣʖͳݗࡩ݃ՎΝർֳͤΖ ͞ͳ͗Ն೵ɽΉͪɼͨΗΔ͹ؖ࿊ͤΖճ٠Ν൅ݡ ͤΖ͞ͳ͗Ն೵ɽ ϑυΨϕϪϑϣʖͲड़ੰं͗ો૥͚ࠕޛ͹ڢ٠͹֕གྷɼ ೖఖܯժ͹घঁ͜ɼͨΗͩΗ͹࿫͹߅ٳద͵ϑυΨঠ࿧ ͳ͢ͱༀཱིͯɽ͵ͧ͵ΔϑυΨϕϪϑϣʖͺ֦࿨ช͹གྷ ༁ͳҲॻͶනࣖ͠ΗΉͤΖɽ ճ٠ηίζϣʖϩͲγϛʖφ͠Ηͱ͏ΖϑυΨϕϪ ϑϣʖͲϤʖδʖ͗ܯժҐ৏͹ϏʖλψϩϕϪ΢Ϩηφ Νࡠ੔Ͳ͘ΖΓ͑ͶͤΖɽ 6DW\DQDUD\DQ$6WUD]]XOOD'.ORNPRVH&1%HDXGRXLQ /DIRQ0DQG0DFND\:(7KH&+,LQWHUDFWLYH VFKHGXOH,Q&+,b([WHQGHG$EVWUDFWVRQ+XPDQ)DFWRUVLQ &RPSXWLQJ6\VWHPV$&0  t ̐̎̏̓̏̏̓̒̐ ್ٸิ ʤ෻αʖηʥ
  114. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ ճં֨ࢠૉࢠΛ༻͍ͨIPMPHSBQIJD QSPKFDUJPOख๏ͷఏҊ ઌߦݚڀʹ͋ΔDBVTUJDTσβΠϯͷ໰୊

    Λϗϩͷ࠶ߏ੒໰୊ͱͯ͠࠶ఆࣜԽͨ͠ ϗϩ໘͔Β૾·Ͱͷޫͷ఻೻Λ෼ੳ͢ΔͨΊʹεΧϥʔ ۙࣅ<HPPENBO>Λ༻͍ͨ
 খ͞ͳճં֨ࢠૉࢠ͕େ͖ͳ౤Ө໘Λ࣋ͭΑ͏ͳઃܭͷ ͨΊʹ0LBEBFUBM<>ͱࣅͨΑ͏ͳೋஈ֊αϯϓϦϯ άख๏Λ༻͍ͨ ෳ਺ͷΞϓϦέʔγϣϯΛ࡞੒
 TVQFSSFTPMVUJPO .VMUJQMFEJTDSFUFQBJSJOHT  "OJNBUFEQSPKFDUJPOVOEFSUSBOTMBUJPO #BSSJFS CBTFENVMUJWJFXQSPKFDUJPO ճં֨ࢠͷ೾௕ʹґଘ͢ΔͨΊɼ੺৭Ϩʔβʔ ͷ৔߹྘৭ͷϨʔβʔΑΓ΋ղ૾౓͕མͪΔ
 ന৭ޫݯͷ৔߹ɼ৭͕෼ࢄ͠΅΍͚Δ
 ߴղ૾౓ͷϑϧΧϥʔʹ͸Ͱ͖ͯͳ͍ !1 4"` 
 
 .JYBOE.BUDI)PMPHSBQIZ
  115. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 +PJOU%1FO*OQVUGPS-JHIU'JFME%JTQMBZT

    MJHIUpFMEσΟεϓϨΠͱϖϯ XJJϦϞί ϯ Λ૊Έ߹ΘͤͨΠϯλϥΫγϣϯγε ςϜ MJHIUpFMEͱͷΠϯλϥΫγϣϯγεςϜ͸͋·Γݚڀ͞Εͯ ͓ΒͣɼδΣενϟೝࣝͳͲͰ͸σϓεΧϝϥͳͲΛ௥Ճͷ ϋʔυ΢ΣΞ͕ඞཁͩͬͨ
 ͜ͷݚڀͰ͸σΟεϓϨΠͱηϯγϯάʹಉ͡ϨϯζΞϨΠ Λ༻͍ͨ ׯবΛى͜͞ͳ͍ͨΊʹ੺֎ઢΧϝϥ*3ϖϯΛ༻͍ͯ ηϯγϯά͸੺֎ઢྖҬͰߦͬͨ
 ΫϩετʔΫΛݮΒͨ͢ΊʹόοϑϧΛ಺ଂ͢ΔϨϯ ζΞϨΠΛ%ϓϦϯτͨ͠ 4JHHSBQIFUFDIͰ਺ඦਓʹମݧͯ͠΋Β ͍ϑΟʔυόοΫΛಘͨ ൺֱతϨϯζαΠζ͕େ͖͘ͳΔͨΊɼը૾ͷղ ૾౓͕ߴ͘ͳ͍
 ཭ΕΔͱ៉ྷʹݟ͑Δ͕ɼͦΕͰ͸ηϯγϯάͷ ਫ਼౓͕Լ͕Δ !2 6*45`
  116. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 "EEJUJWF-JHIU'JFME%JTQMBZT
 3FBMJ[BUJPOPG"VHNFOUFE3FBMJUZXJUI

    )PMPHSBQIJD0QUJDBM&MFNFOUT ϗϩάϥϑΟοΫޫֶૉࢠ )0& Λ༻͍ͨϚϧ νϨΠϠʔͷՃ๏ϥΠτϑΟʔϧυσΟεϓϨ Π ϥΠτϑΟʔϧυΛॏͶ߹ΘͤͯΔʁ ैདྷͷDPNQSFTTJWFMJHIUpFMEEJTQMBZͷଟ૚4-. Λલఏͱͨ͠ΞϧΰϦζϜͰ͸ճંΛແࢹ͍ͯ͠ ΔɽͦͷͨΊճંͷӨڹ͕େ͖͍࣌γϛϡϨʔγϣ ϯ݁Ռͱҟͳͬͯ͠·͏ɽ γʔεϧʔϚϧνϨΠϠʔσΟεϓϨΠͷͨΊʹಛఆํ ޲ͷೖࣹޫͷΈΛ֦ࢄ͢Δ)0&Λ࣮૷ͨ͠
 Ճ๏ϥΠτϑΟʔϧυσΟεϓϨΠΛղͨ͘Ίͷඇෛ࠷ খೋ৐๏ʹ5IFUSVTUSFHJPOBMHPSJUIN<$PMFNBOBOE -J>Λ༻͍ͨ EJ⒎VTFS)0&Tͷճંޮ཰ͱಁա཰Λௐ΂ͨ
 σΟεϓϨΠੑೳΛௐ΂ΔͨΊʹϐʔΫ৴߸ରࡶԻ ൺ 14/3 ΛγϛϡϨʔγϣϯ͔Βܭࢉͨ͠
 ϓϩτλΠϓΛ࣮૷ͨ͠ ੵ૚-$%ͳͲͱҟͳΓΫϩετʔΫͳͲ͕ൃੜ͠ʹ͍͘
 ϓϩʔϒ೾ͷҙਤ͠ͳ͍ճંʹΑͬͯΰʔετΤϑΣΫ τ͕ൃੜ͢Δ
 ϓϩτλΠϓͰ͸৭ऩ͕ࠩൃੜ͍ͯ͠Δ !3 50(`
  117. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 1SBDUJDBM"DRVJTJUJPOBOE3FOEFSJOHPG%J⒎SBDUJPO

    &⒎FDUTJO4VSGBDF3FqFDUBODF ฏ໘ϗϞδχΞεճં෺࣭Ͱͷද໘൓ࣹ ʹΑΔճંޮՌʹجͮ͘ϨϯμϦϯάख ๏ͱද໘ͷܭଌख๏ ճંޮՌͷϨϯμϦϯά͸γϛϡϨʔγϣϯίετ͕ߴ ͍
 ຊख๏Ͱ͸ϦΞϧλΠϜϨϯμϦϯάΛ͢ΔͨΊʹ-&% র໌ͱ௨ৗͷσδΧϝͰςΫενϟΛࡱӨ͢ΔͷΈ ୯ҰͷςΫενϟͷࣸਅ͔ΒճંޮՌͷ์ࣹ র౓Λଌఆ͢Δख๏͓ΑͼճંޮՌͷϨϯμ Ϧϯάख๏ɽ͜Ε͸)VZHFOT'SFTOFMͷݪཧ ʹجͮ͘ ఏҊख๏Ͱ࣮ࡍʹ(-4-ͰϨϯμϦϯά Λߦͬͨ ύλʔϯ͕ҹ࡮͞ΕͨϗϩάϥϑΟοΫϖʔύʔ ͳͲͰ͸ճંύλʔϯͷΈΛ෼཭͢Δͷ͕೉͍͠
 ಛघͳݦඍڸΛ࢖ͬͯද໘Λܭଌͨ͠৔߹ͱൺ΂ Δͱղ૾౓͸ྼΔ !4 50(`
  118. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 #JOBSZ$POUJOVPVT*NBHF%FDPNQPTJUJPOGPS

    .VMUJWJFX%JTQMBZ %-1ϓϩδΣΫλͱΞΫςΟϒͳγϟο λʔϝΨωΛ༻͍ͨϚϧνϏϡʔσΟε ϓϨΠ ઌߦݚڀͰ͸POP⒎ͷΈͷγϟολʔʹΑ Γ࣌ؒతʹ੾ΓऔΒΕΔͨΊɼσΟεϓϨ Π͕ͪΒͭ͘ 18.੍ޚʹΑΔγϟολʔͷಁա཰੍ޚ
 ಁա཰ͱ%-1ͷΠϝʔδϯάΛղͨ͘Ίͷό ΠφϦ࿈ଓը૾෼ղ໰୊ %-1ϓϩδΣΫλɼϦΞεΫϦʔϯɼγϟολʔ ͔ΒͳΔϓϩτλΠϓΛ࡞੒͠ɼ౤Өͨ͠Πϝʔ δΛࡱӨͨ͠ɽ·ͨͦΕ͕γϛϡϨʔγϣϯͱҰ க͢Δ͜ͱΛ֬ೝͨ͠ -$%γϟολʔͰ͸γϟολʔͷۦಈ଎ ౓ʹΑͬͯίϯτϥετ͕ݮগͯ͠͠·͏ ͕ɼ.&.4γϟολʔΛ࢖͑͹վળՄೳ !5 4*((3"1)`
  119. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 4FBNMFTT7JTVBM4IBSJOHXJUI$PMPS7JTJPO

    %FpDJFODJFT ৭ऑऀͱඇ৭ऑऀ͕ಉ࣌ʹίϯςϯπͷ ϏδϡΞϧΛڞ༗͢ΔͨΊͷγεςϜ ઌߦݚڀͰ͸ڧௐ͢Δඞཁͷͳ͍৭·Ͱ ڧௐ͍ͯͨͨ͠Ίෆշײ͕͋ͬͨ ؟ఏࣔ ΰʔάϧ͋Γ ͷࡍʹ৭ऑऀ͕৭Λ۠ผ Ͱ͖ΔΑ͏ʹ͠ɼ୯؟ఏࣔ ΰʔάϧͳ͠ ͷ৔߹ ͍Ͱ͸ඇ৭ऑऀ͕৭ͷζϨ͕ؾʹͳΒͳ͍Α͏ ͳը૾ͷϖΞΛੜ੒͢Δ͜ͱ <)VBOHFUBM>BOE<$IVBFUBM>ͷ ख๏ͰಘΒΕͨը૾ͱͷൺֱ
 ඇ৭ऑऀͱ৭ऑऀʹରͯ͠ඃݧऀ࣮ݧΛߦͳͬͨ ಉ࣌ʹෳ਺ͷ৭ऑλΠϓʹ͸ରԠͰ͖ͳ͍
 ৭ऑͷλΠϓ͕ಉ͕ͩ͡ɼॏେ౓͕ҟͳΔ৔߹ɼ࠷΋ॏେͳਓ ʹ߹ΘͤΔඞཁ͕͋Δ
 γϛϡϨʔγϣϯ͕ݸਓͷࢹ֮Λਖ਼֬ʹϞσϧԽͰ͖ͯͳ͍৔ ߹ɼ݁Ռ͕ಘΒΕͳ͍͜ͱ͕͋Δ !6 4*((3"1)`
  120. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 $JOFNB%-BSHF4DBMF"VUPNVMUJTDPQJD%JTQMBZ

    QBSBMMBYCBSSJFSΛ༻͍ͨөըؗʹ͓͚Δ શ٬੮ད؟ཱମࢹख๏ өըؗͳͲͷ޿͍εϖʔεͰ͸ད؟ཱମ ࢹ͸ࠔ೉
 ಛఆͷ࠲੮ͷϢʔβʔ͸ɼڱ͍ൣғ಺Ͱࢹ఺Ҡ ಈ͕Մೳ
 өըؗͰ͸٬੮͸ݻఆͷͨΊຕͷQBSBMMBY CBSSJFSͱہ໘ܗঢ়ΛٻΊΔ࠷దԽख๏ ௿ղ૾౓ͷө૾Λදࣔ͢Δөըؗͷϛχνϡ ΞϓϩτλΠϓΛ࡞੒͠ɼ֤੮Ͱད؟ཱମ ࢹ͕Ͱ͖Δ͜ͱΛ֬ೝͨ͠ ϥΠτϑΟʔϧυϓϩδΣΫλ΍ɼεΫϦʔ ϯͷޙΖ͔ΒΠϯλʔϨʔε͞ΕͨBOHVMBS JNBHF Λ౤Өͯ͠΋ಉ༷ͷ݁Ռ͕ಘΒΕΔ !7 4*((3"1)`
  121. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ࣍ʹಡΉ࿦จ ҏ౻ 
 
 (B[F4UFSFP%4FBNMFTT%JTQBSJUZ.BOJQVMBUJPOT

    ࢹઢ௥੻ʹجཱͮ͘ମࢹͷԞߦ͖஌֮ͷ ௐ੔ख๏ ஫ࢹ఺ͷج͍ͮͯίϯςϯπΛௐ੔͢Δख๏͸ଟ ͋͘Δ͕ɼैདྷͷݚڀͰ͸BDDPNNPEBUJPO WFSHFODFDPOqJDUͷͨΊʹࢹ͕ࠩݶΒΕͯ͠·͏ 1FMJFUBM<>ͷݚڀΛ࠷ॳͷࢹࠩมԽ ͷεϐʔυΛܭଌ͠ɼϞσϧԽͨ͠
 γʔϜϨεͳࢹࠩૢ࡞͕Մೳ ඃݧऀ࣮ݧʹ͓͍ͯɼͲ͜ʹ΋஫ࢹ఺Λઃ͚ͳ ͍৔߹ɼ#FSOIBSEFUBMʹࣅͨख๏ɼ )BOIBSUBOE&CSBIJNJ<>ͱൺֱΛߦͬͨ ϙοϓΞ΢τޮՌ͕ബΕΔ
 ͜ͷ࿦จͰ༻͍ͯΔ஌֮ϞσϧͰ͸ӡಈ ࢹࠩΛߟྀʹೖΕ͍ͯͳ͍ !8 4*((3"1)`
  122. &YQFSJNFOUBM0CTFSWBUJPOPGBO&YUSFNFMZ %BSL.BUFSJBM.BEF#Z B-PX%FOTJUZ/BOPUVCF"SSBZ 1H 'B04A:i#<=<8 <!4@8F HEi*;4JA 0H#<Ai4A7'H?<6>8? $ =4L4A

    %)#& "%#$ '#+.0   ȴȄɘȆĮ ͳΜͷ࿦จʁ ɧǍȀŬmȷǝ‘}–‰ěȉXȝǸŽpm‰Ŝ ¦IJƔ}¢rXŸnɧǍŽĻmƩǡŬǝ¦ ±^ÙêÊÍÃâ^Õ¦ɟm‰ƻšƙ{ƒ ઌߦͱͷൺֱ ƖɣȷƉȟȤƌɨrǻuX Šl¢Y ƳšȀŽŷ £ƒȷƉdzŠ‘ ȧǻm ٕज़ɾख๏ͷΩϞ ǻmȤƌɨ¦Ɗŕ}¢ƒœŽȮɑťǔ¦ǻɎȉX Ê͹«¾%+ƀɟXȰīǕťǔŽ}¢ ݕূํ๏ ±^ÙêȾŜòǙƸ ȤƌɨŽĥŁ}¢ŽĦˆm ‰XĥŁƸ¦Ŧo¢ ٞ࿦͸͋Δʁ ŮАÊÍÃâ^Վpm‰OëO eȲȸ ßÇç¦ŷƹ}¢Ž‘Ȯɑťǔz ¢ɧďr Ȭɠ ࣍ԿಡΉʁ 2 3 +;8?86GEBA<64A75BB>B9&CG<64? BAFG4AGF4A7 +;8E@B BCG<6B899<6<8AGF
  123. .VTISPPNTBT&GGJDJFOU4PMBS4UFBN(FOFSBUJPO%FWJDFT %<A:/H/<4BM;8A H.8<6;4B /H/<HD<4A: #<#<A1;BH*;<A<A:1;H4A7!<4 1;H -&%+)#$/   ȴȄɘȆĮ

    ͳΜͷ࿦จʁ ÛÄ»âç^ݑȒǶȀťǔŽŸ¡ƴƪĪȣƻŽ ȁ{‰m¢y‹rȸq†ƒYŮБ@HhxHw†‹ £¦ǩljĆ{ȄƅƴƪĪȣƻțɯȯĉ¦Ũ†ƒY ઌߦͱͷൺֱ ǜɡŜŽŸ¢ƴƪĪȣƻ‘ɝ]ƳšȀťǔrŷ £‰ sƒrXŮБƈdžŽǙŵ{‰m¢ťǔ¦ɟm‰m¢Y ٕज़ɾख๏ͷΩϞ ÛÄ»âç^ݐǩljĆ ťǔȀȒǶq ɛo £¢ǜɡŜIJƔXƴȸŝČȀýȥ ƴȸŝɨȀƪȣŽǞ{‰Xɭmþĸrɛo £¢Y ݕূํ๏ ȅƁŐȫķ¦ɟm‰ǩljĆ{ƒųťǔ¦ģŹ ŶɬƸƉ¦ňœ¢ĆĝʼnūǗǼ ǜɡŜ¦Ȋ‰ƒųŒ£„wȘ¦IJƔ{Xƴrƪȣ}¢ qǗǼ ٞ࿦͸͋Δʁ ƈdžŽl¢ťǔ¦ɟm¢‹mny‹ƈǝŽôɍ‘ l¢\ ࣍ԿಡΉʁ  $4G8E AG8E9468F  
  124. 1PMZVSFUIBOFHSBQIFOFOBOPDPNQPTJUFGPBNTXJUI FOIBODFEUIFSNBM JOTVMBUJOHQSPQFSUJFT ?8FF4A7E4#BE8AM8GG<$4EG<A4)BFBA7E84EHF6;8GG44E?B B4E8GG< 4A7$<6;8?8 $B78FG< '$.%)* -& +"&'$'!#*

      ȴȄɘȆĮ ͳΜͷ࿦จʁ Úæ¬èÁꎵåÔ­ê¦Ȗ£ƒųǫȘƸțȯĉ‹ Ēɭ ઌߦͱͷൺֱ µåÔ­êžȘċLjƸÚæ¬èÁê¦ínɶȹ‘ ǛuǙŵ}¢rX£ ¦ ‡ljŶŽ{‰ƛ–‰m¢‘ ¥~q{qm`ȅĪƸƉXȘŽ‡m‰‘ƞa ٕज़ɾख๏ͷΩϞ ȷɧȀǪƸ·êÖ嫩꽋ƊųŽǭĚ}¢ £¦ȨĜ}¢ŽXǧƜłŠÖéÈÁ«Ó굦 Ũ†ƒ ݕূํ๏ µåÔ­êƈǝȯĉ åÛêǗǼ ǫȘƸȯĉ *$ŠljŶȮɑ¦ģŹ{XŲŠǢsz¦Ƿ–ƒ ٞ࿦͸͋Δʁ µåÔ­êɎȉrǻm ŗǝÚæ¬èÁꎇm‰‘Ŧo‰mm ࣍ԿಡΉʁ  $4G8E AG8E9468F  
  125. 'MFYJCMFBSUJGJDJBMMZOFUXPSLFETUSVDUVSFGPSBNCJFOUIJHIQSFTTVSF TPMBSTUFBNHFOFSBUJPO *8L87 $B;4@@47*4=47<j%4M4A<A 4EB>;A<4j'8L@4A E4=<M47$HA<5 4FA4<A4A7 47< ;4F8@< ',)&$'

    +)#$* "%#*+). 0   ȴȄɘȆĮ ͳΜͷ࿦จʁ ƦìdŪ쐌… ƩǡŠƪĪȣƻrċț Ƴšťǔȷŷƹ ઌߦͱͷൺֱ ŪìƩǡŽpm‰ǜɡŜ¦®Ìç³^‹{ƒ ƪĪȣƻrǦƹz£ƒ‘y£rƞœ‰ ٕज़ɾख๏ͷΩϞ ljŶ¦ŷƹ}¢ųŽȌɐȷƉ‹{‰'$*¦ƀɟ{‰m¢ y£ŽŸ†‰9?8K<5<?<GL5HBL4AGA4GHE8?BJG;8E@4?6BA7H6G<I<GL ¦ɛo¢ ݕূํ๏ ;ǜɡŜ¦l‰XƅƪĪì¦ǗǼ{ƒ ™ƒXǜɡŜĶz‹ƪĪăȉĥŁ¦Ƿ–ƒ ٞ࿦͸͋Δʁ ŮĐǜɡŜȅɯ¦ >.™Š{qǗǼ¦py†‰ mmrX£ðƥŽ}¢‹Œn¢\ ࣍ԿಡΉʁ 23 ;4F8@< %< $ $4E6BAA8G ! #BB@<F* 08E6<
  126. (SBQIFOFPYJEFCBTFEFGGJDJFOUBOETDBMBCMFTPMBSEFTBMJOBUJPO VOEFS POFTVOXJUIBDPOGJOFE%XBUFSQBUI /<HD<4A: #<45.8<6;4B /H45$<A:L4B +4A:45#<A1;BH45<A1;H45*;<A<A:1;H454A7!<4 1;H45  /

      ȴȄɘȆĮ ͳΜͷ࿦จʁ ǜɡŜŽŸ¢ƴƪĪȣƻrċț:E4C;8A8×^½ťǔǝŽ Ǟ{‰XƴǺ¡Ȑ¦ƆŒȀŽƷŚ}¢‹ƪȣŝɨr ƥr¢y‹r¥q†ƒ ઌߦͱͷൺֱ tH|LNne}Guf?M<ED1‚ˆ`rH ƴrȓȲŽƬȖ}¢y‹ru¡X®Ìç³^é½r ɉx¢ ٕज़ɾख๏ͷΩϞ ȘIJƔǝ‹{‰&Ôªçݦɟm¢ `îĉXŲŠťǔ¦‡XȘȃȏɨrɭma ݕূํ๏ ƴɑŪz¦ȿo‰Șŝɨ¦ŅǗ{ƒ ŒŪzŽpm‰ƆŒȀƷŚ¦Ũ†ƒɅr ŝɨrɭm ٞ࿦͸͋Δʁ ƴɑƨŊrȿĆ{‰—‹§ŒȘŝɨrȿĆ {m Șŝɨƈǝr†‹ŪmljŶ¦ĕȣŠs£’ Ï«°Û½ƝɧŒǛɅɑŽɦɟŠsn ࣍ԿಡΉʁ 2 35<B<AFC<E87E8HF45?8C4C8E 54F87FLFG8@
  127. 'BDJMF'BCSJDBUJPOPG-JHIU 'MFYJCMFBOE.VMUJGVODUJPOBM(SBQIFOF 'JCFST 18?<A BA:;4A:6;8A: !<4A:H;H ;8A:04A:1;4B4BDH4A *;<#4A !<4A:4A7#<4A:G< (H

    -&%+)#$*/   ȴȄɘȆĮ ͳΜͷ࿦จʁ :E4C;8A8¦ɟmƒǛĩțÔ¨«Ï^ŷƹ ઌߦͱͷൺֱ %+‘ŷƹ·½ÈrŪq†ƒ¡XŷƹƨŊrǢȿ„†ƒ ` fDžřa :E4C;8A8¦ŷƹ}¢ɝ]ɅɆrŎĴz£‰p¡X ŮБ£ ɅɆɶ¦ėǵ}¢ ٕज़ɾख๏ͷΩϞ ·½ÈÐÔ¯^Û꽎ɗ£¢&Ōǥÿ¦Ƅ…m‰ ŷƹ}¢y‹ŠXɜõŽŷƹŠs¢ŸnŽ{‰m¢ ݕূํ๏ ŷƹ{ƒÔ¨«Ï^rəŝqŒnq¦ɯĝȀX ȅĪȀȒƸq Ƿ–ƒ hɯĝȀ[ĊȘ}¢‹ĶȉrǢsuƥr¢ ȅĪȀȒƸ[Ĺx‰ǽţ‘úǼǬ ࣍ԿಡΉʁ  șɶȹŠ ƊɟɰrĨǠz£‰mƒ *@4EG6?BG;<A:8?86GEBA<6G8KG<?8FŒŽŒŸnŽ ƀ¥£‰m¢qǷ–‰š¢
  128. (SBQIJUJDDBSCPOOJUSJEFOBOPTIFFU FMFDUSPEF CBTFEIJHIQFSGPSNBODFJPOJDBDUVBUPS H4A.H 0<A:H 04A:#<H !<A:=<A:1;4B /H8?<;8A -<A68AG.;B8;?<A: 8T7E<6'?8FF8<4B+

    $ %:HL8AE8T78TE<6-<74?.8<;8A +,)/   ȴȄɘȆĮ ͳΜͷ࿦จʁ %É^Ö¦Ũ†ƒ±^Ùê¦ƀɟ{ƒ «°ê©´Ãâ®^Áŷƹ ઌߦͱͷൺֱ %É^֐±^Ùê¦ƀɟ{ƒ©´Ãâ®^Áƈǝr ǖƅȀȤāXǟİƸ¦Ƅ†‰m¢XĆĝȺũŽ¢ƨŊ rȦórŢm ٕज़ɾख๏ͷΩϞ DZlj¦É^Óêµ}¢y‹ŠȮɑȅĆɎȉ¦ŪœX «°ê‹«êÁå´»äê¦ǓǢz¢ ݕূํ๏ ²àлÁê½XɷšǢsz‹%Ğū ĥŁƸ¦Ƿ–ƒ ࣍ԿಡΉʁ 23?86GEB@86;4A<64?58;4I<BEB99H??L C?4FG<646GH4GBEF
  129. 4ZOUIFTJTBOETJ[FEFQFOEFOUNBHOFUPTUSJDUJWFSFTQPOTF PGGFSSJUFOBOPQBSUJDMFT BOEUIFJS BQQMJDBUJPOJONBHOFUPFMFDUSJD QPMZNFSCBTFENVMUJGFSSPJD TFOTPST ) BAU4?I8Fi45 #4EE84i6$ *

    *854FG<4A7 - *854FG<4A68 ' $4EG<AF44A7* #4A68EBF $8A78M79 "'.$'#+.'  "%#*+)./   ȴȄɘȆĮ ͳΜͷ࿦จʁ Ô­å«ÈɪƁ¹«¾ŽŸ¢ƇĪɷš•òǙƸ‹ ȅƇĪƸț¦Ƅ‡¿ê¹^Ž‡m‰ ՝୊ ٙŠ‘ƇĪɷšŽĥ}¢ȤāŽpm‰Ô­å«È‘ B8&ŽǞ{‰ɲ†‰p¡XűȁĆrȬɠ‹ z£‰mƒ ٕज़ɾख๏ͷΩϞ Ô­å«ÈɪƁ¹«¾¦ȿŤ{XǢszƈǝr Œ£u mƇĪɷšŽþĸ¦ı˜{‰m¢qǷ–ƒ ݕূํ๏ A@ A@ A@¹«¾ŠÔ­å«ÈɪƁ¦ŷƹ{X ƇĪɷš‹ȅìŁƵǗǼ¦py†ƒ ٞ࿦͸͋Δʁ ŮАƊőŽpm‰‘A@ƅƸțrúȧŸq†ƒ B8&E~>;K6H{D1ORX]Q3VE =CJm8@7 ࣍ԿಡΉʁ 23 %4ABF64?8 R
  130. &MFDUSPNFDIBOJDBM"DUVBUJPOXJUI$POUSPMMBCMF .PUJPO#BTFEPOB 4JOHMF8BMMFE$BSCPO/BOPUVCFBOE/BUVSBM#JPQPMZNFS $PNQPTJUF 0<A:H.8<;8A#H;H4 #H!<A:;4< #<H4A7;HAEH< ;4A:  0

      ȴȄɘȆĮ ͳΜͷ࿦จʁ ²È¹ê¦Ƅ…mƒÏ«°ÙæÛ^‹%+¦ů€ƒ q ¢ȅĪĆĝȀ©´Ãâ®^Áĕȣ ઌߦͱͷൺֱ ±^ÙêrƄ‡ȒǶȀƸƉŽŸ¡XٙŠ©´Ãâ®^Á rƄ‡ƸƉ `ȘȀƸƉXĩēȀƸƉX«êÁ^Ô­«½ ‹{‰ɖĞa¦ėǵ{ƒ ٕज़ɾख๏ͷΩϞ ²È¹ê¦ĊoX±^Ùê¦Ųquȸżz¢y‹Š ±^ÙêȒǶ¦Ÿ¡ȣħŠs¢ŸnŽ{ƒ ݕূํ๏ ȏȅƸǗǼX*$ŠȮɑťǔģŹ`²È¹ê þĸ¦ęȗaXƮȍŽŸ¢ȿñX©´Ãâ®^»äê űdzăȉȿƦǷ–ƒ ٞ࿦͸͋Δʁ ŮА©´Ãâ®^Á¦ɟm‰ Ï«°Æ´Íé¼^XÛ«´éɩǝɯĝŒ ɝ]ȸɕŽɟm¢y‹rŠsn `ŮřǚɶȹŽüɟz£‰mu\a ࣍ԿಡΉʁ 2 34E5BA%4ABGH584A7'B?L4A<?<A8 B@CBF<G86GH4GBEF
  131. #JPJOTQJSFE.JDSPPSJHBNJ CZ4FMG'PMEJOH1PMZNFS 'JMNT #8BA<7 BABI )'%'$,$) "%#*+). &".*#*/  

    ȴȄɘȆĮ ͳΜͷ࿦จʁ 'B?L@8E9<?@Ž‘CžăȉŒĖȀɠûŽǞ{‰X ƸƉrȿ¥¢rǛuǙŵ}¢ y£¦ɦɟ{‰ȶŻƆŒťǔ¦Çº«ê}¢ ݱࡏͷτϨϯυ coFpHZP^\N‡6Mƒ„ hĢǧŽŷ£¢r»êÖçȿłš  6HGG<:@<6EBJ8?? ?<>8FH5FG4G8FC;BGB?<G;B:E4C;LŽŸ¢ ɅɆhȶŻljŶŽǞ{‰ȁƾɅɆ¦ǃ”y‹rȬɠ„r ɝ]łrȮŕċț ظ଴͞ΕΔ͜ͱ Ƀ›XĕuhɪƁƙȖ¡¦·êÈé^ç Ɉ ™mXȚɌȱDzƸh½Û^ÈɸNjŧ CȿƎŸ¢ȍsh©´Ãâ®^Á ٞ࿦͸͋Δʁ ǝȓŽȖ£ŭ§ŠƷŚ{ƒ¡XÖéµåÛÕç ljŶŽ}¢y‹ŠƆŒťǔƷŚrċțŽ¢q ࣍ԿಡΉʁ 23$ !4@4? $ 14E49F;4E   E46<4F %4G B@@HA 
  132. 1IPUPBDUVBUPST BOENPUPSTCBTFEPODBSCPOOBOPUVCFT XJUITFMFDUJWFDIJSBMJUZEJTUSJCVUJPOT 1H 'B04A:i#<=<8 <!4@8F HEi*;4JA 0H#<Ai4A7'H?<6>8? $ =4L4A

      ȴȄɘȆĮ ͳΜͷ࿦จʁ Ô¯Èޱ˱çŝȦƄ‡ÚæÛ^‹ *<A:?8.4??4E5BA%4ABGH58*.%+Ɨnjq ¢ ©´Ãâ®^Áŷƹ ઌߦͱͷൺֱ Ɩɣ©´Ãâ®^ÁŠ‘P Fu mqq¢ȤāŠl†ƒ rXP FǏzŽ†ƒ ňœƒȝǸŽǞ{‰ǃǤȀȤārċț ٕज़ɾख๏ͷΩϞ *.%+ŷƹųŽ'ÞêÕèê¦ɟm‰*.%+ɞÿ¦ Ʊľ¤č}¢čǿ ĢǧŽXȒȽȐĽ¦ɟm~Žŷƹċț ݕূํ๏ Ϋ½Ó^ɱÞåŠŜ¦Ȋ‰ƒƅȤā¦ ģŹ{ƒĹr¢ƅXɓ¢ƅ‹Ž FðąǏz ٞ࿦͸͋Δʁ *.%+XÚæÛ^Ɵz¦űȁĆzXŸ¡Ƹț¦ ƥx‰msƒm ࣍ԿಡΉʁ 2 3E4C;8A8 54F8746GH4GBEF 2 345E<64G<BAB9@<6EB@8G8E F64?8 +,)/
  133. "OFMFDUSJDBMMZDPOUSPMMBCMFBMMTPMJETUBUF"V!HSBQIFOF PYJEFBDUVBUPS̈ 1H 'B04A:i#<=<8 <!4@8F HEi*;4JA 0H#<Ai4A7'H?<6>8? $ =4L4A 

     ȴȄɘȆĮ ͳΜͷ࿦จʁ H‹:E4C;8A8q ¢©´Ãâ®^Á¦ŷƹ{ ȅďƉrȰɠXŪmāȋƸ¦Ƅ‡XȎ|ȍs¦ŀ¡ɀ¢ ‹mn‡y‹¦Ǧƹ{ƒ ઌߦͱͷൺֱ E47<8AG:E4C;8A8¦ɟm¢‹ŪƸț©´Ãâ®^Á rŠs¢‘ȸq†‰mƒrBHGCHGǖƅȀƷŚr Ȕ{q†ƒ ٕज़ɾख๏ͷΩϞ H¦:E4C;8A8ŽȱDzz¢ŽȘŠğǐzƒř ƱľƪDzɆŠļ·^ƪ굦Ũn ݕূํ๏ ȅì¦&% &{ƒƅǖƅƸXȿñXăȉȿĆ ǗǼ ٞ࿦͸͋Δʁ HŸ¡îĉļǘ¦ƀn‹Šsm„¤nq ࣍ԿಡΉʁ 23! $H BH 1;H .4A:0 #<4A7 ( 1;4A:*6< )8C "'.$'#+.'  "%#*+).
  134. "QQMJDBUJPOPG/ʖ%PQFE5ISFF%JNFOTJPOBM3FEVDFE (SBQIFOF0YJEF "FSPHFMUP5IJO'JMN-PVETQFBLFS ;BBA: *HA"<@iɼ"LHA:HA #88jɼ!HA: $<A#88g *4A:&H> "<@jLHA: !<A

    ;Bi4A7 !HA: .BB;B<i * (($#%+)#$* #&+) */   ȴȄɘȆĮ ͳΜͷ࿦จʁ % E&¦ɟm‰ȘĄĸ½Ó^±^¦ŷƹ{ƒ ઌߦͱͷൺֱ Ƹț¦ąxmƒœŽ‘¹Ú^ÈŴɏ{Š:E4C;8A8¦ɟm¢ Ȭɠrl¢„rXq‰G96CIzŠvlGg6C 6F:BA2jb1% E&N‡6M<ED T[3Yk…=5zŠvlJa€Ž{ƒ ٕज़ɾख๏ͷΩϞ Șé½¦ɉvƒœŽ‘Ɠwȇ{ȲȸȘɜɮrǻmX ȏȅƸrmmy‹rijœ £¢rXŸnƸƉ¦Ƅ‡ Ŷɬ‹{‰E4C;8A8ŽDzɒ{ƒ ™ƒƸț¦ƥx¢ƒœŽŷƹčǿŠ9E88M87EL<A:¦Ũ†ƒ ݕূํ๏ *BHA7'E8FFHE8#8I8?*'#ǗǼ` .ƙɯŽ ǟon¢ ƊɟƸrl¢‹Ŧo £¢a ٞ࿦͸͋Δʁ *'#ɧɶȀŖĔǬq ‘™„Ām 4% E&¦†‹Ȣu{‰XȘɜɮ¦ąx¢a ࣍ԿಡΉʁ 23+E4AFC4E8AG4E5BA%4ABGH58+;<A<?@ #BH7FC84>8EF
  135. 'PMEBCMF(SBQIFOF&MFDUSPOJD$JSDVJUT#BTFEPO 1BQFS4VCTUSBUFT .BB!<A LHA&&>'4E>4A7LHA: BB;<A -&%+)#$/   ȴȄɘȆĮ ͳΜͷ࿦จʁ

    Ô¨Õæ¶^»äêŽɟm¢ƒœXȅĪƸƉŽȒǶ¦ Ƅ‡XµåÔ­ê‹mnljŶ¦ƿ¡ƒƒœ¢ŸnŽ{ƒ ઌߦͱͷൺֱ «êµ¼­ÄÈÁ«ÖµåÔ­ê‹ȨĜ{‰X Şz·êÈé^çrċț ٕज़ɾख๏ͷΩϞ µåÔ­êĐɵ¦ŷ¢ɅɆ `µåÔ­êȸżÿ¦ÔªçÁ^ŽǺ{‰XØêŠȡr}a Űŕ}¢y‹rɜõŠXȒȽȐĽȬɠm ݕূํ๏ ZµåÔ­ê¦  eP  eȦóŠƿ¡ƒƒ› Z  eX  eŽ£‚£_ Đƿ¡ƒƒ› £‚£siGS_WRV_UNdy ٞ࿦͸͋Δʁ ƿ¡ƒƒ§Š{™n‹µåÔ­êƸț‘l¢ǿȉ Ɂƒ£¢rXƸțƈǝrűŪƸț ‹Ȩ–¢‹ɲ†‰{™n hȁƾÉ^ÖŒlj¦ǃǤ}¢ ࣍ԿಡΉʁ 2 3%4G ';BGBA<6F
  136. 'FSSPGMVJECBTFEUSJCPFMFDUSJDFMFDUSPNBHOFUJDIZCSJEHFOFSBUPS GPSTFOTJUJWF BOETVTUBJOBCMFWJCSBUJPOFOFSHZIBSWFTUJOH $L8BA: #B> *8B?45 *8HA: 48!8BA4 !<A .BB4A504A:

    "LH ;B< &'&)!.   ȴȄɘȆĮ ͳΜͷ࿦จʁ ɋźȅĪ‹ȅƇɯk‡œɧ¦ɟm‰®Ìç³^¦ ƻšƙ}ƇƸɩǝȣȅޱ˾ݎ‡m‰ ઌߦͱͷൺֱ ɋźɯ‹ȅƇɯ¦NJšū¥ƒȣȅ‘Ǵɒ¦ƕœ‰m¢rX ɋźɯŽǟon¢y‹rȬɠŠl¡Xÿǝ‹ŗǝ¦ NJšū¥‰ɋź¦ņŔ}¢©Öé^Ãrl¢ ŮБƴžəĩɞȠŽƇƸɪƁ¦ɞq{ƒ ·é«Éɞÿ¦ƀny‹Š©Öé^æƂšƒ ݪཧ Ʈȍ¦Ċo¢‹‡ŔƠrĭy¢ ƴ‹ȼɑrź£‰ƼȅĪrȣƻ}¢  ƇƸɩǝrȍuy‹ŠƇɯȿĆrȣƻ{ èêŐɆǕŽŸ¡ȅĪrȣƻ}¢ ٞ࿦͸͋Δʁ 圉ƐmƮȴ @@Š&" ƮȍƵȖɯŽƷŖrm ‹mnãË^´ȒƸ¦Ƅ‡ ࣍ԿಡΉʁ 2 3.4G8E FB?<7FHE94686BAG46G8?86GE<9<64 G<BA 4A7 <GFHF89BE;4EI8FG<A:?<DH<7 J4I88A8E:L
  137. %1SJOUJOHPG-JHIUXFJHIU$FMMVMBS$PNQPTJUFT E8GG B@CGBA4A7!8AA<98E #8J<F -&%+)#$/   ȴȄɘȆĮ ͳΜͷ࿦จʁ ®Ú²»«ê´¦ɟm‰ņɮŲɇƩťǔȷ¦

    ŷƹ{ƒ ઌߦͱͷൺֱ ÖæêȊŪĩțŲɇƩťǔȷ¦ŷƹ{ƒ‘ ƞœ‰ ٕज़ɾख๏ͷΩϞ ®Ú²»«ê´Ž»æ·ê±^ϫɋ±^Ùêǂø¦ ɴ¡y›y‹ŠXƙɯřŽy£ rɹɱŽȻ“ŪĶȉ ťǔȷ‹¢ ݕূํ๏ «ê´ɩȍȀƸƉXƂɬü†ǵ¡Ķȉ¦ ǗǼ{ƒ ٞ࿦͸͋Δʁ yťǔ‘ƣŇIJƔŴž¹êÉ«ÄÃÐÌ獌 ŋǰXťǔń•āɟrĨǠz£¢ŠXƀmȐž ɮŽɅɆŎĴ•‹»ÔÈ{n ࣍ԿಡΉʁ 2 38??H?4EFB?<7FFGEH6GHE84A7CEBC8EG<8F
  138. 4VSGMFY"1SPHSBNNBCMF4VSGBDFGPSUIF %FTJHOPG5BOHJCMF*OUFSGBDFT $4E68?BB8?;B<EBF;< F;<<'4GG<8$48F 0   ȴȄɘȆĮ ͳΜͷ࿦จʁ łƩĬĂūļ¦ɑ¦·êÈé^ç}¢y‹Žɟm¢y‹Š

    ƯljŶ¦ŒŸnŽɟm¢q¦Ŧo·êÓâ^Á «êÁå´»äêċțƸ¦Ǩ†ƒ ઌߦͱͷൺֱ Ï^ÃàçɻÔª¼±ç‹†‰m¢ ٙŠ‘Ï^Ãàç¦ǎŷ{‰Ôª¼±çŽɥ‹{ŭ›y‹ {qŠsq†ƒ ٕज़ɾख๏ͷΩϞ ȳŒɯ‹ɁǙɯ¦ȅĪ¦ɩ{‰ăȉ¦ȿŤ{X ƷŚ{‰m¢ ٞ࿦͸͋Δʁ ȽljŶ¦ɟm‰Ȏ|Ÿny‹¦Ũn‹Œ Ÿn©Ô¯^Â꽞ÀÔȬ­©‹ «êÁå´»äê¦ȣħ}¢q\ ࣍ԿಡΉʁ 2 3A8J@B78?9BEFB9G 5B7<876?<@5<A: 4A75HEEBJ<A:EB5BGF
  139. 4VCMJNBUF4UBUF$IBOHJOH7JSUVBMBOE1IZTJDBM3FOEFSJOHUP "VHNFOU*OUFSBDUJPOXJUI4IBQF%JTQMBZT 4A<8?#8<G;<A:8E*84AB??@8E?8K&?J4?*4@H8?#H8F6;8E><@<GFHB::8!<A;4 #88<EBF;< F;<< /   ȴȄɘȆĮ ͳΜͷ࿦จʁ

    µåԪĴ¦ɟm‰Ç¼ÁçßÇç¦ƷŚ}¢ «êÁ^Ô­^½ŷƹ *;4E87<FC?4L‹) C;LF<64?F;4C8E8A78E<A:‹mn‡ «êÁ^Ô­^½¦ŷƹ{ƒ ઌߦͱͷൺֱ ŕƊȷƉC;LF<64?‹ã^º^«êÁ^Ô­^½I<EGH4? ¦NJšū¥ƒÎ«ÕæÄɍǪ½Ö諦ŷƹ{ƒ ٕज़ɾख๏ͷΩϞ «êÁ^Ô­^½ǀŅŽpm‰ƴXȭXƴƪĪ‹mnƩǡ DŽ÷¦ÞÁÔ¨^‹{‰XC;LF<64?I<EGH4?C4EG<64??L I<EGH4?‹ mn‡Ʃǡ¦Ŧo‰m¢ ݕূํ๏ ðąȂ¦ćǁŽ{‰ã^º^ōƤ¦Ũ†ƒ Z¼­½Ãà^Ÿ¡ȷɧȀŽ¦ǎŷ}¢Ʌr ǹġȀŠ¥q¡ž}m\ Z«êÁå´»äê¦ŨnȲȸrǢsmɅr Ôª^ÉÏÄ´rǢsuXĢǧŽ Šs¢\ ٞ࿦͸͋Δʁ Óê¦ɟmƒǎŷ‘ďǒȉrǻmXȽɅɆ¦Ŧo¢ Ò^ݽÖæÄÁ^¦ɟmƒǪ½Ö諄‹ )ÁÕèÄȞ$‹ùmXȶƵƳŠ «êÁå´»äêrŠsn
  140. $IBOHJOHUIF"QQFBSBODFPG1IZTJDBM*OUFSGBDFT5ISPVHI $POUSPMMFE5SBOTQBSFODZ 4I<7#<A7?54H8E!BE:$H??8E$4E6?8K4 /   ȴȄɘȆĮ ͳΜͷ࿦จʁ ȌɐȉƷŚ¦ŨmXŏƒɒ¦ȿo¢y‹ŠǭĚ}¢ł¦ ȿo¢y‹rŠs¢ȷɧȀ«êÁ^Ô­^½‹£¦ŷƹ

    }¢ÀÔȬ­©ĕȣ ઌߦͱͷൺֱ )Öé¼­´»äêÛÄÓ굋ù†‰ŏ‰m¢Ƴñǯ rŏoɅŽþĸ{m ™ƒX$Œ‹ùmXÇÏ«½ŽLJ‰NJšŭ™£‰m¢ ŠĈq¦ƲŽ‡w¢Ȭɠ‘m ٕज़ɾख๏ͷΩϞ Ķȉ¦ƙ}ƒœŽŗu{}t¢‹ƿ£‰{™nŠX Ñ꼦ŷ¡Ĺx‰p£~Žł¦ȿož}mŸnŽ{ƒ ϝϦοτ ĩēȀŽȿł{ƒ¡}¢«êÁ^Ô­^½‹Ȩ–‰ ȿĆr‹‰ǏmXź¡ƾ£ƒ¡ɳwƒ¡{mX ®Ìç³^ơȪrƠmy‹rĵx £¢ ٞ࿦͸͋Δʁ ĩēȀŽȿ¥¢«êÁ^Ô­^½‹‘ɂĠȀǙŵ hĩțƸŶɬ‹NJšū¥¢‹ǑƸrɭzn ƀɟ{ƒŶɬ'#‘ƍœq ŏƒ¡XƗ¢‹ Ȍɐȉrɥ…¢ ÀÔȬ­©ƈȍƦ{ƒm ࣍ԿಡΉʁ 23945E<64G<A:;<:;?L6HFGB@<M45?8G;<A 9<?@ GBH6; 7<FC?4LF
  141. "O*OUFSBDUJPO"XBSF 1FSDFQUVBM.PEFMGPS/PO-JOFBS&MBTUJD0CKFDUT $<6;4?'<BI4E6<ɽ 4I<7 . #8I<A!4FBA)858??B8F4<;8A)B@4AHE<>BI< ɽ 6ɽ4AFC8G8E'9<FG8E.B=6<86; $4GHF<>'<BGE<7L> 

     /   ȴȄɘȆĮ ͳΜͷ࿦จʁ ÖæêÁ^ƙɯ¦ɟm‰ŕƊƶĔȷƉrƄ‡Ɖġ¦ Űŕ}¢ƑɆŽ‡m‰Y Ƴrȷǝ¦ŝČȀŽȗǭ}¢ŽƉġ‘Ǣƃ ઌߦͱͷൺֱ ÖæêÁ^¦ɟm‰m¤m¤ł¦ƙɯ}¢ɅɆ‘ Ŧo £‰mƒrXƫ̎Ǟ{‰©Öé^Ñƞ ٕज़ɾख๏ͷΩϞ ȷɧȀǪƸ·êÖ嫩꽋ƊųŽǭĚ}¢ £¦ȨĜ}¢ŽXǧƜłŠÖéÈÁ«Ó굦 Ũ†ƒ ݕূํ๏ ǛƆŒƏȉťƹɆŽŸ†‰ȸƽ¦ŨmX ǧƜł ƒ¹êÖç¦ƑŽȖ£ƒ ٞ࿦͸͋Δʁ ɯŽĥ}¢Ñ½ÈµåÝ9<:HE8Ç^Á¦Ÿu }£’Ÿ¡ƺꎍ¡n ‡‡uðĖ«êÁå´»äꎇm‰Ŧo¢ ࣍ԿಡΉʁ  $4G8E AG8E9468F  
  142. 4LZJT/PUUIF-JNJU4FNBOUJD"XBSF4LZ3FQMBDFNFOU 0< FH4A +F4<  /<4B;H< *;8A1;8 #<A"4?L4A *HA>4I4??<$<A: FH4A

    04A: ,A<I8EF<GLB94?<9BEA<4$8E6877B58)8F84E6;  /   ȴȄɘȆĮ ͳΜͷ࿦จʁ Ȟѐľ¦ȽȞюȿo¢ƒœƑɆY ઌߦͱͷൺֱ Ǜu<ACHGĎǒŽǞ{‰XŸ¡ƈdžBHGCHG¦}¢y‹r Šs¢ŸnŽ†ƒYúȲnŠml¢ ٕज़ɾख๏ͷΩϞ <ACHGĎǒŽǞ{‰XŃģÐ^½¦‹†ƒ¡ôɍˆwŽ %¦ɟm¢Ďǒq ȷǝ¦Ó´¿çǧñŠɚǍ}¢ųŽ ɟm¢ĎǒȸƽƑɆ ݕূํ๏ ŮАƑɆŠŷƹ{ƒĎǒ‹ǚƑɆŠŷƹ{ƒ Ďǒ¦ȨĜ{ƒYɊƑɆɅrȩőƎ½·©rŪm ™ƒXɊȷƋƱ‹Ȩ–¢‹  rɊȷŸ¡æ©ç „‹m†ƒȎǿȉȖ£¢‹  ٞ࿦͸͋Δʁ ɊȷƋƱ‹Ȩ–ƒ‹sŽƉɔſɅŽŸ†‰Ğūr ȿĆ{ƒ‘ƳĤƭɧȀɔǣrɤ§Šm¢ŸnĪ }¢ ࣍ԿಡΉʁ H??L6BAIB?HG<BA4?A8GJBE>FŽ‡m‰
  143. 8BUFS8BWF1BDLFUT *+%!*" *+HFGE<44A7%-  ) *.&!+% *+HFGE<4 )&*+#'&*'&)("#*/  

    ȴȄɘȆĮ ͳΜͷ࿦จʁ ƴɑȝ»Üâè^»äꎇm‰ Ư{m©ç¸æ¾Ýŷƹ‹£¦ŒŽ{ƒ ©ËÞ^»äêŷƹ ઌߦͱͷൺֱ .4I8C46>8G‹mnƯ{mŦoɅ¦ɟm¢y‹Š ɪƁȸż‹®Ìç³^ȃȜr»âÜè^Ȋs¢ ™ƒXqq¢·½Èɢo £¢ ٕज़ɾख๏ͷΩϞ ®Ä¼Ȃ¦™™Ŧo¢ŠuXdzȂ¦Ŧo¢ y‹ŠɑŽȸĞ}¢y‹ŠXƺę®Ìç³^ŅžXĿƿ ȤƌŅžrŠsXĎɑƥŽl¢ȷǝ‹ȝɑ«êÁå´ »äêŦo¢y‹rŠs¢ ݕূํ๏ ȮɑǵɯXȚȉX½¶^çXƴưŒÐåÞ^Á¦ ȿŤ{‰Æ½È¦ŨmXŕƊŏƒɒŽĻu¢q¦ ōƤ{ƒ ٞ࿦͸͋Δʁ ÐåÞ^ÁƈǝrűƠƵɺǬ{qƄƒmŠX ǼƸȀq‘đ{m ɰĖƅŽŒŸnŽ¢q‘¥q m ࣍ԿಡΉʁ Q.4I8'4EG<6?8FS 0H>F8? 8G4? 2 3
  144. .JSSPS.JSSPSBO0O#PEZ5TIJSU%FTJHO4ZTUFN 4A<8?*44>8F H< *;LBA: 08B*8HA: +4> %B;L8B? 4A .BBAG46> .BB

    /   ȴȄɘȆĮ ͳΜͷ࿦จʁ ã^º^ƈǝrķŸnÇª½Ö諦ɟm‰ ƈȸŠ+»àŦǺ«ê}¢ƯƒÇº«ê»½Æݐ ťǰ ઌߦͱͷൺֱ ǚ»½ÆݑN@4:<6@<EEBEN‹mnÒÇ°±Þå¦ɟmƒ )įƚ¦ƀɟ}¢y‹ŠXæ©çÁ«ÝŠ«êÁå´ »äê¦ċțŽ}¢y‹ŽƢȂrm†‰mƒrXy »½ÆݑȶƵã^ºŽŸ¢«êÁå´»äêŽƢȂ¦ ǯm‰m¢ ٕज़ɾख๏ͷΩϞ ȶƵã^ºŽŸ¢«êÁå´»äê¦ċțŽ}¢ƒœŽX ÁÕèÄȦɟm‰Řmȵ¦Çº«êŠs¢ŸnŽ{ƒ ݕূํ๏ ȩőƎŽǞ{XȶƵɅɆŠ+»àŦǺ«ê{‰  mX£Žqq†ƒƅĤǗǼ‹ã^º«êÁ Òâ^¦Ũ†ƒ ٞ࿦͸͋Δʁ ƞƭƎ‹ƘɴƎ`Ǻ«êaŽpw¢şšɅɆ ‘l¢Ÿn„rXy»½Æݦɟm‰ƂŨŸś{ r ŷƹ¦}¢y‹ŠNjǔƸrŪ™¢‘ęq ࣍ԿಡΉʁ 23LA4@<6F;478E ?4@CF
  145. U1BE%FTJHOJOH5SBOTQBSFOU%JTQMBZ.PCJMF*OUFSBDUJPOT !H4A4I<7<A64C<V )4@BF *BC;<8)BF6;8E .B?9:4A:WF6;8?,?E<>8 "<FG8E)4<@HA746;F8?G'BHE4A: E4A< /  

    ȴȄɘȆĮ ͳΜͷ࿦จʁ Ƅ…ý“rŠs¢Xɫɑq Ȗƙɯrċț ȌɐÇª½Ö諦ŷƹ{XȕƦÁ½´Žpm‰ ŒŸnŽƀɟŠs¢q¦‡±Æ¸å«¾z£ƒ «êÁå´»äêq ŦŹ}¢ ओு ƀɟɟȈ¦±Æ¸å«¾{ã^º^ŽǾï}¢y‹ ŽŸ†‰X½Á^ÈǮȂrɐꎍ¡ĉǬr ĶǷz£‰ȗǭ}¢y‹rŠs¢ ݁Ռ ÛçÃÁ½´žƧɄĘȑŒȕƦȀŽpyn ŨȍŽǞ{‰əŝy‹r¥q†ƒ ࣍ԿಡΉʁ 2 3*C468+BC ͭͷΧςΰϥΠζ &I8E?4LH4?F<78<ACHG BHGCHGG '47Ž‰ 4CGHE8$B78? 54F87G '47Ž‰
  146. -JHIUJOH(SJE)JFSBSDIZGPS4FMGJMMVNJOBUJOH&YQMPTJPOT %0,"*#$0,"*# )&*+#'&*'&)("#*/   ȴȄɘȆĮ ͳΜͷ࿦จʁ ·êÓâ^Á¦ɟm‰X©ËÞ^»äêŽƀ¥£¢ Ŝžþ¦ƈȍƻƹ}¢©ç¸æ¾Ý ઌߦͱͷൺֱ

    ¹êÖçrǛuȬɠX·½ÈrŪmXƅĤrqq¢ ‹mnɔǣ¦ďň ٕज़ɾख๏ͷΩϞ ȍȀŜȂ¦ƷŚ{Xö¢ďǒȉè«á^¦ mu‡Ɨ¢y‹Šæ©çŜ¦ƻƹ}¢ ݕূํ๏ <:HE8 ĎǒŽǞ{‰£‚£njŜȂƵ þ¹«¾XŅž‹qɣ„ȕŽqq¢ƅĤ¦ŅǗ{X Ƹț¦ȯĉ{ƒ ٞ࿦͸͋Δʁ ínƳƈƲrÐåÞ^Á¦ǀǼ}¢ſNJšŽ†‰ m¢ŠXɹɱŽƙ¢qryŠň™†‰{™n hƈȍƊs¢—nrmm\ ࣍ԿಡΉʁ ŮАɅɆ‹ȨĜz£‰m¢ bIB?H@8GE<6<??H@<A4G<BAcŽ‡m‰
  147. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    %εΧϧϓτʹΑΔϖʔύʔΫϥϑτͱిؾతύʔπ૊Έ߹Θͤͨ ΋ͷ ۦಈɺηϯγϯάɺදࣔɺίϛϡχέʔγϣϯػೳΛ΋ͭ σβ Πϯϝιου ϖʔύʔΫϥϑτͱಋిੑͷ΋ͷͰผʑʹͳ͍ͬͯͨ΋ͷΛ౷߹ͨ͠ %଄ܗͷ৽ͨͳσβΠϯϝιουͱͳ͍ͬͯΔɻ Ωϡʔϒϥϯϓɺݐங໛ܕɺϑΥτϑϨʔϜɺਫݕ஌২໦ുɺ͓΋ ͪΌɺεϐʔΧʔɺΧοϓϗϧμʔͳͲ࡞ͬͨɻ ϓϦϯλͷੑ্࣭ɺ࢖͑Δࢴʹ੍໿͕͋Δɻ·ͩɺ-BZFSΛࣗಈͰΧ ΢ϯτͰ͖ͳ͍ͨΊΧ΢ϯτΤϥʔʹΑࣦͬͯഊ͢Δ͜ͱ͕͋Δ &MFDUSPOJDQPQBCMFTFYQMPSJOHQBQFSCBTFEDPNQVUJOH UISPVHIBOJOUFSBDUJWFQPQVQCPPL 5&* .DPS*3*4Λ࢖͍ɺ໨తͷ-BZFSʹػೳΛ࣋ͭಋిੑγʔτΛڬΈࠐ Ή఺ $)*
  148. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    طଘͷ%ϓϦϯτύʔπΛύʔπͷ઀৮ͳͲͷௐ੔͠ςετҹ࡮ʹ ΑΔϢʔβʔʹΑΔϞσϧௐ੔ແ͠ʹϦϛΩγϯά ࠶݁߹ ͢Δ΋ͷ ϦϛΩγϯάͱௐ੔Λ܁Γฦ͢͜ͱͰ࣮ࡍʹҹ࡮ͨ࣌͠ʹɺௐ੔ແ͠ ػցͱͯ͠ಈ࡞͢Δ͜ͱ ֶੜਓʹ͜ͷγεςϜΛ࢖ͬͯɺXJSFUXJTUFSɺXPPMXJOEFS Λ࡞ͬͯ΋Β͏λεΫߦ͍ɺ࣌ؒΛܭଌͨ͠ɻ ճస࣠ʹج͍ͮͨػցʹݶఆ͞Ε͍ͯΔɻ 4ZNNFUSZJOEHFPNFUSZ&YUSBDUJPOBOEBQQMJDBUJPOT*O $PNQVUFS(SBQIJDT'PSVN 7PM /P QQ  'VODUJPOBMJUZBXBSFSFUBSHFUJOHPGNFDIBOJTNTUP% TIBQFT 50( ػߏͷύʔπΛάϥϑߏ଄Ͱॲཧɺ3"/4"$ΞϧΰϦζϜʹΑΔճ స࣠ͷݕग़ͳͲͰɺύʔπಉ࢜Λͭͳ͙͜ͱ͕Ͱ͖Δ $)*
  149. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ϑΟδΧϧ6*Λࣗ༝ͳܗঢ়ͷฏ໘্Ͱ(6*ͰϨΠΞ΢τ͠ɺ༗ܗͷ΢Ο δΣοτ 6*ίϯϙʔωϯτ Λ಺ଆʹӅΕΔΑ͏ʹ഑ஔͳͲΛௐ੔͢ Δπʔϧ ࠷ऴతͳϝογϡͷεϜʔδϯάͷख๏͸ɺ෺ཧతͳγϛϡϨʔγϣ ϯͰ͸ͳ͘ɺՄࢹੑʹج͍͍ͮͯΔͨΊ༰қͳ఺ ࢖͍΍͢͞ͷݕূͷͨΊʹඃݧऀ࣮ݧΛ͠ɺλεΫ࣌ؒͱ໨ඪઃܭͱ ͷζϨΛܭଌͨ͠ɻ ۂ཰ͷมԽɺ·ͨ͸ɺϒϥέοτͷߏ଄ʹΑͬͯ෦඼͕ΤϯΫϩʔδϟ ʹΑͬͯӅΕͳ͍͜ͱ "4FSJFTPG5VCFT"EEJOH*OUFSBDUJWJUZUP%1SJOUT6TJOH *OUFSOBM1JQFT 6*45 ύʔπͷͨΊͷ࿐ग़ͨ͠ϒϥέοτΛΤϯΫϩʔδϟͷ಺ଆʹ׬શʹ ऩΊΔΑ͏ʹϒϥέοτΛௐ੔͢ΔΞϧΰϦζϜ $)*
  150. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    γϦίϯͷܕͱҨ఻త഑ஔΞϧΰϦζϜΛ࢖༻ͯ͠Ϩγϐͷ͞·͟· ͳܗঢ়ஔ׵Λ࣮ݱ͠ɺྉཧͷຯ֮ߏ଄Λ੍ޚͰ͖Δ΋ͷ %*(*5"-("4530/0.: 6*45ʟ Ͱ͸ɺ৯΂෺ͷܗ͚ͩΛมԽ ͕ͤͨ͞ɺ৯΂෺ͷຯ΋ϓϩάϥϜՄೳʹͨ͠ ৭ϜʔεΛ࡞ͬͯΈͨɻΞʔϞϯυγϡτϩΠθϧɺΠνΰϜʔεɺ μʔΫνϣίϨʔτϜʔεɺϗϫΠτνϣίϨʔτϜʔε %৯඼ҹ࡮ͷओͳݶքͷͭ͸ɺੜͷ৯෺ࡐྉͱϑϨʔόʔͷछྨ ͕গͳ͍͜ͱͰ͢ɻ৯΂෺ʹΑͬͯ଄ܗ͕஗͍ 'PSNBOE$PEF*O%FTJHO "SUBOE"SDIJUFDUVSF "(VJEFUP $PNQVUBUJPOBM"FTUIFUJDT OPUQBQFS  1BSBNFUSJD#VJMEJOH%FTJHO6TJOH"VUPEFTL.BZB 3PVUMFEHF OPUQBQFS ྉཧͷཁ݅ΛϏοτͷ഑ஔͱྉཧͷྔ ܗঢ়ͷ܁Γฦ͠ɺόϥϯεɺ Ϗοτ෼഑༏ઌ౓ΛύϥϝʔλΛ΋ͭ໨తؔ਺Λ࢖͍Ҩ఻తΞϧΰϦ ζϜʹΑͬͯ࠷దԽ໰୊Λղ͍͍ͯΔɻ $)*
  151. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    '%.ํࣜΛ༻͍ͨંΓͨͨΈʹΑΔ%ܗঢ়ͷϥϐουϓϩτλΠϐ ϯάख๏ ۂ໘ંΓࢴ ࣗݾંࠐܗঢ়ͷҹ࡮͸ɺߴ͍අ༻ͷ͔͔ͬͨ%ϓϦϯλ΍ಠࣗʹ࡞ ੒ͨ͠ϓϦϯλ͕ඞཁ͕ͩͬͨɺ͜Ε͸ࢢൢͷ'%.ํࣜϓϦϯλͰ Մೳͳ఺ ͜ͷख๏Λ༻͍ͯΞϓϦέʔγϣϯΛ࡞੒ͨ͠ɻ"SU4FMGGPMEJOH 3PTF 5SBOTQPSUBUJPO4FMG'PMEJOH#PBU 'VSOJUVSF4FMG 'PMEJOH$IBJS 8FBSBCMFT4FMG'PMEJOH"SNPS ग़ྗϓϦϯλʹΑΔղ૾౓ͷ੍ݶɺॏྗͱࡐྉͷࣗॏ͕ܭࢉͰ͖ͳ͍ ͷͰɺ͋Δఔ౓ߏ଄ʹ੍ݶ͕͋Δɻώϯδͷܺؒʹ͕݀͋Δ %1SJOUJOHBOEVOJWFSTBMUSBOTGPSNBUJPO"$"%*" 5IFSNP QPMZVSFUIBOF ˆͰ༥ղ͠ɺˆҎ্ͰTFMGGPMEJOH FGGFDUTΛ࣋ͭ ͷҹ࡮Λɺۂ͕Δ֯౓ʹΑͬͯɺҹ࡮଎౓ͱ௕͞ͷௐ ੔Λͨ͠ɻ $)*
  152. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    '%.ํࣜͷϓϦϯλͰࢴͷ্ͷʹΞΫνϡΤʔλͱͯ͠࡞༻͢Δಋ ిੑϑΟϥϝϯτΛҹ࡮ͨ͠ϖʔύʔΞΫνϡΤʔλ 'PMEJPͱ͸ҧ͏఺͸ɺ'%.ํࣜΛ༻͍ͯҹ࡮ͨ͠ύλʔϯ͕఍߅Ճ ೤ཁૉΛ͔࣋ͬͯͭΞΫνϡΤʔλͱͯ͠ಇ͘͜ͱ ͜ͷख๏Λ༻͍ͨΞϓϦέʔγϣϯΛ࡞੒ͨ͠ɻ·ͨɺΞΫνϡΤʔ λͱͯ͠ͷԠ౴࣌ؒΛܭଌͨ͠ɻ ͜ͷख๏Ͱ͸ඵͰ׬શʹ΋ͱʹ΋ͲΔ (SBQIFOF1-"͕๲ு͢ΔͨΊϊζϧ͕٧·Δɻϊζϧͷߴ͞Λௐ ੔͠ͳ͚Ε͹ࣦഊ͢Δɻൺֱతߴ͍ిѹ 7 Λඞཁͱ͢Δ 'PMEJP%JHJUBMGBCSJDBUJPOPGJOUFSBDUJWFBOETIBQFDIBOHJOH PCKFDUTXJUIGPMEBCMFQSJOUFEFMFDUSPOJDT 6*45 (SBQIFOF1-"Λ༻͍ɺిؾత఍߅Ճ೤ʹΑͬͯܗঢ়͕Ͳͷఔ౓· ͕Δ͔ΛܭଌɾԠ༻͠σβΠϯπʔϧͱͯ͠ఏڙͨ͠఺ͱɺ $)*
  153. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    %ϓϦϯλΛ༻͍ͨిؾΛඞཁͱ͠ͳ͍ճݶΓͷ ΦϑϥΠϯύογϒηϯα ෛՙɺѹྗɺՃ଎ɺ܏ࣼɺԹ౓มԽΛײ஌͢Δ Λ࡞੒͢Δख๏ ిࢠ෦඼Λ௥ՃͰඞཁͱͤͣɺ%ϓϦϯλͷΈͰ׬݁͢Δ఺ ࡞੒ͨ͠ηϯαΛ༻͍ɺ ηϯα͕ಈ࡞͢Δఆྔతͳ෺ཧྔΛ༩͑ݕূͨ͠ɻ ݀ͷ଄ܗ͸%ϓϦϯλʹΑΔɺ·ͨزԿֶత੍໿ ߴ͍ۂ཰ɺബ͍γΣ ϧͳͲ͸೉͍͠ ͕͋Γɺճ͔͠࢖͑ͳ͍ .FUB4JMJDPOF%FTJHOBOE'BCSJDBUJPOPG$PNQPTJUF4JMJDPOF XJUI%FTJSFE.FDIBOJDBM1SPQFSUJFT 50( ηϯαͷ಺ଆʹ͸ಋిੑͷഔମ ࿦จதͰ͸ਫಓਫ Λ༻͍ͯɺ੩ి༰ ྔλονύωϧͰɺηϯαͷ5SVFPS'BMTFΛݕग़͍ͯ͠Δ఺ $)*
  154. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    डಈతͳ෺ମʹ༰қʹద༻Ͱ͖ΔιϑτΞΫνϡΤʔλͱɺͦͷΞΫ νϡΤʔλͷͨΊͷ҆ՁͳࡐྉΛ༻͍ͨߴ଎੡଄ํ๏ͷ։ൃ ػցతཁૉ ػց෦඼ Λ·ͬͨ͘औΓ෇͚Δ͜ͱ͕ແ͍఺ ത෺ؗͰϫʔΫγϣοϓ ໊෼ Λ։͖͜Ͳ΋ʹɺ༡ΜͰ΋Β͍ ؆୯ͳΞϯέʔτʹ౴͑ͯ΋Βͬͨɻ ࢖༻཰͕ΞΫνϡΤʔλͱͯ͠ར༻͞Εͨ όΠφϦ੍ޚ͔͠Ͱ͖ͳ͍ɻΞΫνϡΤʔλͱͯ͠ͷ৴པੑͷ؍఺Ͱɺ ର৅Λଛইͤ͞ΔՄೳੑ͕͋ΔͷͱɺΞΫνϡΤʔλࣗମ͕ർ࿑ͯ͠ ͠·͏఺ 1*/0,:BSJOHUIBUBOJNBUFTZPVSQMVTIUPZT $)* Ϣʔβʔ͕೚ҙͷ৔ॴͰ੾ΕΔܗঢ়ͷςʔϓঢ়ͷΞΫνϡΤʔλΛ࡞ ΓγϦϯδʹΑΔ੍ޚख๏Λཱ֬ͨ͜͠ͱ 5&*
  155. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ৯༻·ͨ͸ҩֶ༻్ͷͨΊͷɺ৯΂ΕΔ࠶ؼੑ൓ࣹ ৯΂ΕΔ MVNJOBUJPONFUFS -. "40/& Λ༻͍ͯ࠶ؼੑ൓ࣹͷಛੑ Λௐ΂ͨɻεΠεϩʔϧʹಈతϓϩδΣΫγϣϯϚοϐϯάΛߦ͍࠶ ؼੑ൓ࣹϚʔΧʔͱͯ͠ͷ༗༻ੑΛࣔͨ͠ɻ פఱʹؚ·ΕΔਫͷৠൃʹΑΓ࣌ؒͷܦաͱͱ΋ʹɺ࠶ؼ൓ࣹػೳΛ ࣦ͏͜ͱɻ·ͨɺߴԹͰͷݕূΛ͍ͯ͠ͳ͍ɻೖࣹ֯ਖ਼໘౓Ҏ಺ Ͱ͔͠࠶ؼੑ൓ࣹ͠ͳ͍ɻ &EJCMFPQUJDT6TJOHHFMBUJOUPEFNPOTUSBUFQSPQFSUJFTPG MJHIU OPUQBQFS5IF1IZTJDT5FBDIFS    &EJCMF-BTFST8IBUʟTUIF/FYU$PVSTF  OPUQBQFS01/.BZ ಁ໌ͷ৯ࡐͰͷ۶ં཰͕Α͍פఱΛ࢖ͬͯίʔφʔΩϡʔϒΞϨΠΛ ͭͬͨ͘ 7345
  156. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    +BNNJOHݱ৅Λར༻ͨ͠มܗՄೳͰ߶ੑΛௐ੔Մೳͳബ͍γʔτ 1BSUJDMF+BNNJOHͱൺֱͯ͠ɺΠϯλϑΣʔεΛബܕɺܰྔʹߏங ͢Δ͜ͱ͕Ͱ͖Δ ಛ௃ ߶ੑௐ੔ੑɺࡐྉڧ౓ɺܰྔԽ ΛධՁ͢ΔͨΊͷͭͷΞϓϦ έʔγϣϯΛͭͬͨ͘ ๲ுͷͨΊͷϙϯϓͱਅۭҾ͖ͷͨΊͷϙϯϓ͕ඞཁͰɺͦΕΛར༻ ͨ͠ΞϓϦέʔγϣϯ͸͔ͭ͠ͳ͘ɺݕূ͕ݶఆతͳ఺ +BNNJOHVTFSJOUFSGBDFTQSPHSBNNBCMFQBSUJDMFTUJGGOFTT BOETFOTJOHGPSNBMMFBCMFBOETIBQFDIBOHJOHEFWJDFT 6*45  $BQBCJMJUZCZ-BZFS+BNNJOH *304 +BNNJOHݱ৅ΛҾ͖ى͜͢ߏ଄Λ-BZFSঢ়ʹͨ͠఺ɻ 5&*
  157. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ӷମʹΑͬͯ೚ҙͷ࣍ݩܗঢ়ʹల։͞ΕΔ%Մ৯ϑΟϧϜ ৯΂Ε͔ͯͭɺมܗલ͕ӡૹʹ഑ྀͨ͠ฏ໘Ͱ͋Δ఺ ܗঢ়ม׵ʹΑͬͯ৯෺ࡐྉͷแΈࠐΈɺܗঢ়ɺ࣭ײͱ૬ޓ࡞༻Λୡ੒ ͢ΔΧελϚΠζੑΛ࣮ূ͢ΔͭͷϝχϡʔΛࢼͨ͠ɻ ࣗ࡞ϓϦϯλͰ͋Γɺ·ͩࢢൢͷࡐྉΛར༻ͨ͠มܗՄ৯ϑΟϧϜΛ ͍ͭͬͯ͘ͳ͍ (BTUSPOPNZ.FUIPET3FDJQFTGPS)ZCSJE$PPLJOH 6*45 ηϧϩʔεણҡͷ߶ੑʹΑΔਫ࿨ʹΑͬͯۂ͛Λ੍ޚ͍ͯ͠Δ ࡐྉྗֶͱزԿֶΛ΋ͱʹ୯७Խ͞Εͨ༗ݶཁૉղੳγϛϡϨʔγϣ ϯͷϓϥοτϑΥʔϜΛ࡞੒ͨ͠ɻ $)*
  158. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ͋ΔύλʔϯΛଞͷύλʔϯʹม׵͢Δ%ϙοϓΞοϓͷϝΧχζ ϜΛࣗಈతʹੜ੒͢Δ΋ͷ %Ͱ͸͋Δ͕"UP#ͷ೚ҙܗঢ়ͷมܗΛ%Λ௨ͯ͠ߦ͍͑ͯΔɻ ͞·͟·ͳมܗύλʔϯΛࢼ͠ɺ৑௕ྖҬ ຊདྷແ͍ྖҬ ͷग़ݱΛ؍ ࡯ɻ·ͨߟҊͨ͠ΞϧΰϦζϜͷదԠճ਺ͱॲཧ࣌ؒΛܭଌͨ͠ɻ ࢴΛޮ཰తʹ࢖͏͜ͱΛߟ͍͑ͯͳ͍఺ɺࢴͷް͞ΛͱԾఆ͍ͯ͠ ΔͷͰɺࢴͷྔ͕ଟ͍ͱώϯδ෇͕ۙް͘ͳͬͯ͠·͏఺ #PYFMJ[BUJPO'PMEJOH%0CKFDUT*OUP#PYFT 4*((3"1) 
 %FTJHOPG.BDIJOFSZ UIFE.D(SBXr)JMM&EVDBUJPO OPU QBQFS.BSDI   Ϧϯέʔδ΍ػߏʹؔͯ͠·ͱΊɺάϥϑʹج͖ͮܭࢉͨ͠఺ 4*((3"1)
  159. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    αϙʔτࡐΛ࢖༻͠ͳ͍%ϞσϧΛ'%.ํࣜͰҹ࡮Λ͢Δ%0'ϩ ϘοτΞʔϜγεςϜ αϙʔτࡐΛඞཁͳ͍Α͏ʹ%ܗঢ়Λมܗͤ͞Δ͜ͱͳ͘ɺೖྗ͠ ͨ%ϞσϧΛαϙʔτࡐແ͠Ͱҹ࡮Ͱ͖Δ఺ ͞·͟·ͳϞσϧΛαϙʔτࡐແ͠Ͱҹ࡮͢Δ͜ͱͰɺγεςϜΛݕ ূͨ͠ɻ·ͨɺ઀ଓ෦ͷڧ౓Λଌఆͨ͠ɻ ҹ࡮଎౓͕ਫ਼౓ͷҡ࣋ͷͨΊʹ஗͍ɻαΠζ͕ϑϨʔϜʹΑ੍ͬͯݶ ͞Ε͍ͯΔɻϩϘοτΞʔϜͷίετ͕ߴ͍ɻෳࡶͳܗঢ়ͷ৔߹ɺ෼ ׂΞϧΰϦζϜ͕ࣦഊ͢Δɻ 4VQQPSUTMJNNJOHGPSTJOHMFNBUFSJBMCBTFEBEEJUJWF NBOVGBDUVSJOH $"%WPM QQr   %JSFDUDPNQVUBUJPOPGNJOJNBMSPUBUJPOGPSTVQQPSU TMJNNJOH $"4& ϩϘοτΞʔϜɺ(DPEFɺ304Λۦ࢖͠γεςϜΛߏங͠ɺϩϘο τΞʔϜͷ֯౓͸ҠಈൣғΛαϯϓϦϯά͢Δ͜ͱͰܾఆɺ'%.ํ ࣜͰͷϏϧυϓϥοτϑΥʔϜΛίϯτϩʔϧͰ͖ΔΑ͏ʹͨ͠఺ *$3"4*(
  160. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    %ΦϒδΣΫτΛཱํମ·ͨ͸ശʹม׵͢Δํ๏ ΦϒδΣΫτΛ੾Γ཭ͨ͠ܗঢ়ʹ͢Δ͜ͱͳ͍ɺંΓͨͨΈՄೳͳ୯ Ұͷߏ଄Ͱ͋Δ఺ ࡞੒ͨ͠γεςϜΛ࢖ͬͯɺંΓͨͨΈՄೳͳόχʔɺࢠೣɺं υϥΰϯɺ৅Λ࡞੒ͨ͠ɻ δϣΠϯτ͕࠷దͳߏ଄ ΑΓλΠτʹ͍ͨ͠ Ͱ͸ͳ͍ɻΦϒδΣΫ τͷಛ௃Λଚॏ ಛ௃తύʔπΛηάϝϯτԽ͢Δ ͠ͳ͍ $IPQQFS1BSUJUJPOJOHNPEFMTJOUP%QSJOUBCMFQBSUT 50(  $POWFSUJOH%GVSOJUVSFNPEFMTUPGBCSJDBUBCMFQBSUTBOE DPOOFDUPST 50( ϘΫηϧԽɺزԿֶత৘ใʹΑΔؔઅҐஔΛఆٛɺπϦʔ୳ࡧͱ͍͏ ϓϩηεΛ௨ͯ͠ɺͻͱͭͳ͕Γͷܗঢ়Λੜ੒͢Δ఺ 4*((3"1)
  161. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    มܗՄೳͳϞσϧͱมܗ͞Εͨϙʔζू߹Λ΋ͱʹɺ ͳΔ΂͘ϙʔζ௨Γʹมܗ͢Δҹ࡮ՄೳͳSPENFTIΛੜ੒͢Δ 3PCϞσϧͷ࠷దԽؔ਺ΛGBCʹར༻ͨ͠఺ ఏҊ͢Δख๏Λ༻͍ͯγʔτ΍)BUɺڪཽɺεϚΠϧΛ3PE.FTIԽ ͠ɺϕϯνϚʔΫΛߦͳͬͨɻ λʔήοτͷϙʔζ͕෺ཧతʹ ΋ͬͱ΋Β͍͠΋ͷͰͳ͚Ε͹ͳΒͳ͍ %JTDSFUFFMBTUJDSPET 4*((3"1)  %JTDSFUFWJTDPVTUISFBET 4*((3"1) ࿡֯ܗͷΤοδͷมܗΛௐ੔͠ɺ ੍໿Λຬͨ͢໨తؔ਺ͷޯ഑Λܭࢉͨ͠఺ 4*((3"1)
  162. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    αϙʔτࡐ͕ͳ͘ܧ͗໨͕ͳ͍ɺதۭͷόϥϯεͷऔΕͨ%ΦϒδΣ ΫτΛੜ੒͢Δख๏ NBLFJUTUBOEͱൺ΂ΔͱαϙʔτࡐΛ׬શʹඞཁͱ͠ͳ͍ҹ࡮ͷͨ ΊɺϞσϧΛ෼ׂ͢Δܧ͗໨ͳͲ͕ແ͍ ख๏Λ༻͍ͯɺ͞·͟·ͳϞσϧΛҹ࡮͠NBLFJUTUBOEͷϞσϧͱ ൺֱͨ͠ ڧ౓ʹ͍ͭͯٞ࿦Λߦͳ͍ͬͯͳ͍఺ɺ·ͨϘΫηϥΠθʔγϣϯʹ Αͬͯදݱग़དྷΔϞσϧ੍͕ݶ͞ΕΔ .BLFJUTUBOECBMBODJOHTIBQFTGPS%GBCSJDBUJPO 50( -BZFSΛ্͔ΒԼʹεΩϟϯ͠ɺΦʔόʔϋϯά֯౓͕Ұఆ৚݅Λຬ ͢Α͏ʹௐ੔Λߦ͏ $"%(SBQIJDT
  163. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ೚ҙͷ࣍ݩܗঢ়ʹࣗݾల։͢Δ࣍ݩฏ໘γʔτΛ࡞Δख๏ %ܗঢ়Λܗ੒͢Δͱ͖֎෦ΤωϧΪʔΛ༩͑Δ͜ͱͳࣗ͘ݾͷΤω ϧΪʔͰಈ͘ ࣮ࡍʹख๏Λ༻͍ͯϞσϧΛ࡞ͬͨɻ·ͨɺݻఆύϥϝʔλ΍࠷దԽ ͷύϑΥʔϚϯεɺਖ਼֬ੑʹ͍ͭͯண໨ͨ͠ ෺ཧత৳ॖͷݶք͔Β͢΂ͯͷܗঢ়͕୯Ұͷฏ໘ʹͳΔΘ͚Ͱ͸ͳ͍ ॏྗΛߟྀ͍ͯ͠ͳ͍ BFSP.PSQI)FBUTFBMJOH*OqBUBCMF4IBQFDIBOHF.BUFSJBMT GPS*OUFSBDUJPO%FTJHO 6*45 ೚ҙ௕͞ͷࡾ֯ܗʹ࠶ϝογϡԽ͠ɺ༗ݶཁૉ๏ʹΑΔόωϞσϧΛ ༻͍ͯɺ࣍ݩܗঢ়Λ࣍ݩʹల։ͨ͠γΣϧͱͦͷγΣϧͷ྆໘Λ ຕͷ஄ੑγʔτΛషͬͨ఺ɻ 4*((3"1)
  164. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ฏ໘ͷࡐྉ͔Βബ͍ΒͤΜͷ੾அʹΑͬͯೖྗΦϒδΣΫτʹྨࣅ͠ ͨ%όωͷܗΛ࡞Δख๏ %ฏ໘͔ΒΧοτͨ͠όωܗঢ়Λ௚઀্࣋ͪ͛ͯख࡞ۀͰͷ૊ཱΛ ΑΓ؆୯͔ͭਝ଎ʹߦ͑ΔΑ͏ʹͨ͠ DNن໛ͷ΋ͷΛ࣮ࡍʹ࡞੒ͨ͠Γɺख๏Λ༻͍ͯϞσϧΛ࡞੒͢ Δ͜ͱͰɺύϑΥʔϚϯεɺόωͷ਺ɺޯ഑ɺྨࣅੑɺ׈Β͔͞ʹͭ ͍ͯண໨ͨ͠ ޻࡞ػցͷੑೳ্ɺ ۚଐ੡ͷόωͰ͜ͷܗঢ়Λ࡞Δ͜ͱ͕ग़དྷͳ͍͜ͱ (FPEFTJDQBUUFSOT 50( ৳ॖ͢Δԁਲ਼ʹͳΔྖҬʹ෼ׂ͠[࣠ํ޲ͷ͹Ͷ࣠ͷ޲͖Λ࠷దԽɺ ࠷దԽ໰୊Λղ͖ܗঢ়Λௐ੔ɺද໘ͷ[࣠Λݻఆ͠ɺYͱZͷ࠲ඪͷҠ ಈͷΈͰόωʹల։Ͱ͖Δܗঢ়Λੜ੒͢Δ &630(3"1)*$4
  165. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    Ԡྗʹ଱͑ΕΔ࠷খॏྔͷ%ߏ଄Λੜ੒͢Δख๏ Ͳͷܗʹ΋దԠͨ͠ͱ͖ʹੜ͡ΔܭࢉίετΛ࡟ݮͨ͠ طଘख๏ΑΓ΋தۭʹߋʹܰྔԽͨ͠ طଘख๏ͱͷൺֱɺϞσϧͷಛ௃ γΣϧͷް͞ɺΞϧΰϦζϜͷऩ ଋੑ ΁ͷண໨ɺ෺ཧతͳϕϯνϚʔΫ ϞσϧͷγΣϧͷް͞Λ࠷దԽ͍ͯ͠ͳ͍఺ɺ খ͞ͳಥى͕ͨ͘͞Μ͋ΔΑ͏ͳܗঢ়Ͱ͸ɺ ԠྗΛਖ਼֬ʹۙࣅͰ͖ͳ͍ ࠷େԠྗܾఆͷͨΊͷߏ଄࠷దԽ໰୊ͷ'&"ධՁΛ΋ͱʹͨ͠ྟքॠ ؒղੳͱɺͦΕʹԠͨ͡ࡐྉ෼෍ͷઃܭ 4USFTTDPOTUSBJOFEUPQPMPHZPQUJNJ[BUJPOXJUIEFTJHO EFQFOEFOUMPBEJOH OPUQBQFS  #VJMEUPMBTU4USFOHUIUP8FJHIU%1SJOUFE0CKFDUT 50( 50(
  166. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ࣗ༝ܗঢ়ͰΠϯλϥΫςΟϒʹָثΛ࡞Δ͜ͱ͕ ՄೳͳγεςϜͷఏҊ ΠϯλϥΫςΟϒʹָثΛ࡞ΕΔΑ͏ʹɺԻڹ఻ୡγϛϡϨʔγϣϯ ͷख๏Λม͑ͯߴ଎Խͨ͠఺ ࣮ࡍʹ࡞੒͠ɺγϛϡϨʔγϣϯͱͷҧ͍Λݕূͨ͠ɻ·ͨɺͲͷα ΠζͰ΋దԠͰ͖Δ͔Λݕূ͢ΔͨΊʹେ͖͍ϞσϧΛࢼͨ͠ɻ ΦΫλʔϒΛ௒͑Δप೾਺ྖҬΛୡ੒͢Δ͜ͱ͸ɺٿܗͷڞৼثʹ ͱͬͯ͸ࠔ೉Ͱ͋Δ఺ɺ Ի࣭ଟগ٘ਜ਼ Ի৭ΛγϛϡϨʔγϣϯ͍ͯ͠ͳ͍ ʹ͍ͯ͠Δ఺ *OUFSBDUJWFBDPVTUJDUSBOTGFSBQQSPYJNBUJPOGPSNPEBM TPVOE 50( ڞ໐໰୊Λ࠷খݻ༗஋໰୊ͱͯ͠ఆࣜԽ͢Δ͜ͱʹΑΓ༗ݶཁૉ๏ʹ ج͍ͮͯڞৼप೾਺Λਪఆ͍ͯ͠Δ఺ Ի࣭఻ୡؔ਺Ͱ͸ͳ͘γες Ϝͷ܎਺ߦྻͷεϖΫτϧಛੑΛ࢖ͬͨ఺ 4*((3"1)"TJB
  167. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ඞཁͳ৔ॴʹ஍৔Λ޲͚Δ͜ͱ͕ग़དྷΔઃܭՄೳͳి࣓ੴΛҹ࡮Մೳ ͳ%ϓϦϯλͷ։ൃ ి࣓ؾతཁૉΛ౓ͷҹ࡮Ͱ૊ΈࠐΊΔҹ࡮͕Ͱ͋Δ఺ ి࣓ੴͱͯ͠ͷੑೳͷଌఆͱͦΕΛ༻͍ͨΞϓϦέʔγϣϯͷ࡞੒ ߴిྲྀͰ͸ιϨϊΠυ͸௕ظؒͷىಈʹ͸ద͍ͯ͠ͳ͍఺ɺෳࡶͳߏ ଄Λ͢Δࡍ͸ΑΓࡉ͍మઢͱઈԑඃ෴Λআڈͷػߏ͕ඞཁͳ఺ 0OUIF'MZ1SJOU*ODSFNFOUBM1SJOUJOH8IJMF .PEFMJOH $)*  1SJOUFEPQUJDT%QSJOUJOHPGFNCFEEFEPQUJDBMFMFNFOUT GPSJOUFSBDUJWFEFWJDFT 6*45 $)*ͰఏҊ͞Ε͍ͯΔ%0'%ϓϦϯλʹϫΠϠΧολʔͱϫΠ Ϡͷר͖ػߏΛඋ͑ͨϓϦϯλΛ࡞ͬͨ͜ͱɻ·ͨɺమઢΛమ৺ͱ͢ Δ͜ͱͰࣗ༝ͳߏ଄ʹରԠͰ͖ΔΑ͏ʹͨ͠఺ 6*45
  168. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ օ઒ୡ໵ َίʔε

    ฏ໘ͱۂ໘ͷ྆ํʹ൅ͷΑ͏ͳ࣍ݩܗঢ়ͷߏ଄Λҹ࡮͢Δख๏ ߴ͞ɺଠ͞ɺ֯౓ͳͲͷݸʑͷϔΞδΦϝτϦͱɺີ౓΍ҐஔͳͲͷ ϔΞΞϨΠͷϓϩύςΟΛݸผʹ੍ޚ͢Δ͜ͱ͕Ͱ͖Δ ࣮ࡍʹϞσϧΛ࡞੒ͯ͠Έͨɻ·ͨɺ࣮ࡍͷΞϓϦέʔγϣϯ ύο γϒΞΫνϡΤʔλɺٵ൫ Λҹ࡮ͨ͠ɻ ͜ͷߏ଄Ͱ෴ΘΕͨϞσϧΛ࡞Δʹ͸෼ׂ͢Δඞཁ͕͋Δɻۂ໘্ʹ ͜ͷߏ଄Λ഑ஔ͢Δਫ਼౓͸ۂ໘ͷϝογϡղ૾౓ʹґଘ͢Δɻ 4FOTJOH5ISPVHI4USVDUVSF%FTJHOJOH4PGU4JMJDPOF 4FOTPST 5&* ൅ͷໟͷԁਲ਼ϞσϧΛ%-1ͷϓϦδΣΫλͷυοτʹۙࣅ͍ͯ͠Δ $)*
  169. DEEPMIMIC: EXAMPLE-GUIDED DEEP REINFORCEMENT LEARNING OF PHYSICS-BASED CHARACTER SKILLS XUE

    BIN PENG PIETER ABBEEL SERGEY LEVINE MICHIEL VAN DE PANNE न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ঔش३ঙথय़কউॳকॡজॵউृय़شইঞش঒॔ॽওش३ঙথ भ஄द઀୹औोॊؚॹشॱप৯৓ಂ਱भਘ৲৾ಆ॑ੌा়ॎच ञ੟৶ঋش५भय़কছॡॱ॔ॽওش३ঙথभইঞش঒ডشॡ ౐঳भঔॹঝইজشभইঞش঒ডشॡऋेॉઁः෇ ೧भঔش३ঙথ५य़ঝऋँॉؚऽञजोै॑ದ๰હ ऐॊચৡ॑੅ढथःॊ deep reinforcement learningभ॔ঝ०জ६঒ [Duan et al. 2016]ऩन॑ઞ৷ ५य़ঝ॑஘رऩय़কছॡॱشؚ୭୆ؚउेलॱ५ॡपজ ॱش।ॸॕথॢखؚളਯभृॉ্॑ੌा়ॎचथളਯभ ५य़ঝ॑ৰষदऌॊेअपखञ నষؚ࿼ฺऩඝ੿ؚजभ౎भ੿঵पి৷औोॊेअपؚ ট঎ॵॺ३५ॸ঒पএজ३ش॑नभेअपଦ૟घॊऊ [Duan et al. 2016] DeepLoco 201511520 ൝਽࿜མ(য৑॥ش५) SIGGRAPH2018
  170. DEEPLOCO: DYNAMIC LOCOMOTION SKILLS USING HIERARCHICAL DEEP REINFORCEMENT LEARNING XUE

    BIN PENG GLEN BERSETH KANGKANG YIN MICHIEL VAN DE PANNE न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ଒ैोञ୤भহ৐ੴ௙॑੅ण୭୆पଦൟखञ ஘رऩઈ৿५य़ঝ॑৾ಆघॊ ୆্ଉभ3D੸ଌనষ५य़ঝऋؚ଒ैोञ୤भ੔भଡ ୗऋ਑౪এজ३شपୖचैोथ৾ಆऔोॊऒध॑ৰ ઒घॊ ਑౪এজ३ش॑৾ಆघॊञीभdeep Reinforcement LearningقRLكभਃચ॑ણ৷ నষ५य़ঝभdeep Reinforcement Learningभञीभ2 ঞঋঝమಽभઞ৷ ્৒भHLCॱ५ॡ॑ઉம१এشॺघॊ୯ਸभLLC५य़ঝ ॑ಆ੭घॊ্১॑ৄणऐॊऒधऋ০৏੎ਏ [Liu et al. 2012] 201511520 ൝਽࿜མ(য৑॥ش५) SIGGRAPH2017
  171. SIMULATION OF HUMAN MOTION DATA USING SHORT-HORIZON MODEL-PREDICTIVE CONTROL M.

    da Silva, Y. Abe, and J. Popovic न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ३঑গঞشॺऔोञয৑॑ৰ੠भ৿ऌॹشॱप଑ऎऒध पेढथؚঽேऩ৿ऌ॑েਛघॊঔॹঝ੒೾॥থॺটش ছMcSim॑઀ં হ৐ੑ઴धু৿भॳগشॽথॢमऺध॒नऩऎؚ੦૆৿੿ ध৊஘पనষؚ௒ষؚ४কথউ৿੿॑েਛघॊऒधऋदऌ ऽघऋؚৌਵச২दৗखः੟৶୭୆قl7كपुిૢघॊ ੒೾॥থএشॿথॺध଩।ॖথभૻ୻๶ী قPDك॥থএشॿথॺقl5ك॑ੌा়ॎचॊ জথॡऔोञྌ৬धமඡৡ৾भ଍஄৲ঔॹঝप੦तऎ੒೾॥থ এشॿথॺقl4ك॑ઞ৷ؚ଍஄৿ৡ৾ঔॹঝमোৡઈ৿॑୯඄ घॊঢ়තৡउेलਗৡ॑ੰৠघॊ੸ઃউটॢছ঒قQPكभ਑৺ धखथઞ৷ ঳৖भ3Dঔش३ঙথभਈిऩঃছওشॱ॑ৄणऐॊऒध ऋ൑୔दँढञ؛৚ૡघॊ৿ऌऩनअऽऎ୯జदऌऩः ৿੿ुँढञ؛ >$)2@$5,.$12)256<7+'$2·%5,(1-) Motion synthesis from annotations. ACM Transactions on Graphics 22, 3 (July 2003), 402²408. 201511520 ൝਽࿜མ(য৑॥ش५) EUROGRAPHICS 2008
  172. A DEEP LEARNING FRAMEWORK FOR CHARACTER MOTION SYNTHESIS AND EDITING

    Daniel Holden, Jun Saito, Taku Komura न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ু੿঵पेॊ৐૪৶ृয৑भু॑ઞॎङपؚপ୤भয৑भ৿੿ॹشॱ॑ ৷ःथؚశ଍஄੗஘৬षभ৿੿ॹشॱभඇी੢ा॑ঽ৿৓प৾ಆदऌॊ ஥ः৾ಆইঞش঒ডشॡप੦तऎ॔ॽওش३ঙথभ়ਛधౣૐभঔॹঝ ॑઀੧ উট७५॑෩खऎઍಔपघॊ৿ऌ७ॢওথॺ৲ऽञ मਜ਼઼়ॎच॑૑ਏधखऩः ৈঞঋঝभঃছওشॱش॑଩ঞঋঝभয৑भ৿ ऌपঐॵউघॊશभইॕشॻইज़ডشॻॽগش ছঝॿॵॺডشॡ॑஋ा੎बॊ পऌऩঔش३ঙথॹشॱঋش५॑ઞ৷खथঔش३ঙথঐ ॽ঍ঝॻ॑ਈੂप৾ಆखؚઃःदؚঘش२োৡधলৡ ঔش३ঙথधभ৑भঐॵআথॢ॑েਛघॊ ५ॱॵॡऔोञॹॕشউड़شॺग़থ॥شॲ॑ঔش३ঙথঐॽ ঍شঝॻभ৾ಆपઞ৷घॊधؚॺঞشॽথॢऋઍಔऩेॉ౐ෞ ऩইॕشॻইज़ডشॻॿॵॺডشॡ॑ઞ৷दऌॊ [Hariharan et al. 2014] 201511520 ൝਽࿜མ(য৑॥ش५) SIGGRAPH2016
  173. DIVERSE MOTION VARIATIONS FOR PHYSICS-BASED CHARACTER ANIMATION Shailen Agrawal, Shuo

    Shen, Michiel van de Panne न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ੐৒औोञல஘॑௥ञघ੗஘ऩঔش३ঙথংজग़ش३ঙ থ॑ঽ৿৓पেਛघॊऒध॑઀੧ ੗஘ਙभਈి৲॑ઞ৷खथؚਂેীऩ৿ऌऋ୸ਛऔ ो੭ॊ੗ऎभ૭ચऩ্১पऽञऋॊ३঑গঞشॺऔ ोञ৿ऌभૐ়॑૭ચपघॊ ੟৶৓ऩय़কছॡॱ॔ॽওش३ঙথभ੗஘ਙਈ ి৲प્৲खञ৯৓ঢ়ਯؚছक़থॻটঅথુী ങষഔిૢقCMAك॑ઞ৷ ৿ऌभ੗஘ਙ॑೾৒घॊञीभ෱௞ওॺজॵॡधखथಉ खऎిखथःॊधੴैोथःॊএش६థ๚ਙওॺজॵॡ भઞ৷ ્৒भৎਡद્৒भय़شইঞش঒पਊञॊऩनؚడഡप਑৺औ ोञঔش३ঙথमؚ੗஘ਙ॑ਈి৲घॊञीभ৖ী૬৑ऋ଒ै ोथउॉ્৒भ਑৺॑௥ञघऒधऋ൑୔पऩॊ BORNO, M. A., DE LASA, M., AND HERTZMANN, A. 2013. Trajectory optimization for full-body movements with complex contacts. IEEE Trans. Visualization and Computer Graphics. in press. 201511520 ൝਽࿜མ(য৑॥ش५) 6&$·
  174. PHASE-FUNCTIONED NEURAL NETWORKS FOR CHARACTER CONTROL DANIEL HOLDEN, TAKU KOMURA,

    JUN SAITO न॒ऩुभء ੔ষଢ଼஢धૻसथनऒऋघओःء ૼ୒ृু১भय़ঔ नअृढथથ஍टधਫ਼઒खञء ৮૛मँॊء ઃपഭिसऌ૛ધमء ਜ਼ৼਃચॽগشছঝॿॵॺডشॡधళयोॊৗखः ॽগشছঝॿॵॺডشॡ॔شय़ॸॡॳক॑৷ःथؚজ॔ ঝॱॖ঒य़কছॡॱ਑౪ਃଡ॑઀ં औऽकऽऩ࿥୦৾৓୭୆पిૢघॊঔش३ঙথ॑ঽ ৿৓पেਛघॊऒधऋदऌॊ ਜ਼ৼॽগشছঝॿॵॺডشॡقPhaseNunction Network؟PFNNكधళयोॊॽগشছঝॿॵॺডشॡ ଡୗ ൽः৉஄ृລඩ॑৚ೂखؚ௽૩॑ೂऐॊय़কছॡॱभञ ीभిજद਀ਠৡभँॊ୎৿॑ঽ৿৓पেਛ ॥থঃॡॺऩଡୗदुؚৎ৑भ৽ૌधधुप৞ෟप૗৲घॊਜ਼ ৼঢ়ਯपेॉؚॿॵॺডشॡଡਛभপऌऩ૗৲॑েाলघऒध पेढथপऌऩৈઃ੪भॹشॱ७ॵॺऊै৾ಆदऌॊ [Holden et al. 2016, 2015] 201511520 ൝਽࿜མ(য৑॥ش५) SIGGRAPH2017