“Adaptive Sampling Towards Fast Graph Representation Learning,” NIPS 2018. Y. Li and A. Gupta, “Beyond Grids: Learning Graph Representations for Visual Recognition,” NIPS 2018. Z. Li, Q. Chen, and V. Koltun, “Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search,” NIPS 2018. T. Ma, J. Chen, and C. Xiao, “Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders,” NIPS 2018. Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained Graph Variational Autoencoders for Molecule Design,” NIPS 2018. W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec, “Embedding Logical Queries on Knowledge Graphs,” NIPS 2018. J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation,” NIPS 2018. M. Simonovsky and N. Komodakis, “GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders,” arXiv:1802.03480 [cs], Feb. 2018. R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical Graph Representation Learning with Differentiable Pooling,” NIPS 2018. P. Ertl, R. Lewis, E. Martin, and V. Polyakov, “In silico generation of novel, drug-like chemical matter using the LSTM neural network,” arXiv:1712.07449 [cs, q-bio], Dec. 2017. W. Norcliffe-Brown, S. Vafeias, and S. Parisot, “Learning Conditioned Graph Structures for Interpretable Visual Question Answering,” NIPS 2018. A. Garcia Duran and M. Niepert, “Learning Graph Representations with Embedding Propagation,” NIPS 2017. M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Networks,” NIPS 2018. S. Woo, D. Kim, D. Cho, and I. S. Kweon, “LinkNet: Relational Embedding for Scene Graph,” NIPS 2018. R. Herzig, M. Raboh, G. Chechik, J. Berant, and A. Globerson, “Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction,” NIPS 2018. M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular De Novo Design through Deep Reinforcement Learning,” arXiv:1704.07555 [cs], Apr. 2017. E. J. Bjerrum and R. Threlfall, “Molecular Generation with Recurrent Neural Networks (RNNs),” arXiv:1705.04612 [cs, q-bio], May 2017. S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley, “Molecular Graph Convolutions: Moving Beyond Fingerprints,” Journal of Computer-Aided Molecular Design, vol. 30, no. 8, pp. 595–608, Aug. 2016. Y. Li, L. Zhang, and Z. Liu, “Multi-Objective De Novo Drug Design with Conditional Graph Generative Model,” arXiv:1801.07299 [cs, q-bio], Jan. 2018. A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” KDD 2016. M. Narasimhan, S. Lazebnik, and A. Schwing, “Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering,” NIPS 2018. A. Newell and J. Deng, “Pixels to Graphs by Associative Embedding,” NIPS 2017. M. Wang, Y. Tang, J. Wang, and J. Deng, “Premise Selection for Theorem Proving by Deep Graph Embedding,” NIPS 2017. A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein Interface Prediction using Graph Convolutional Networks,” NIPS 2017. T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” ICLR 2017. S. M. Kazemi and D. Poole, “SimplE Embedding for Link Prediction in Knowledge Graphs,” NIPS 2018. X. Liang, Z. Hu, H. Zhang, L. Lin, and E. P. Xing, “Symbolic Graph Reasoning Meets Convolutions,” NIPS 2018. S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch Your Step: Learning Node Embeddings via Graph Attention,” NIPS 2018. M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An End-to-End Deep Learning Architecture for Graph Classification,” AAAI 2018. F. Monti, M. Bronstein, and X. Bresson, “Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks,” NIPS 2017. E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning Combinatorial Optimization Algorithms over Graphs,” NIPS 2017. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation Learning on Large Graphs,” NIPS 2017. A. Garcia Duran and M. Niepert, “Learning Graph Representations with Embedding Propagation,” NIPS 2017. 50