Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
推論エンジンMAXの紹介
Search
Ryosuke Kamesawa
July 22, 2024
Technology
1
430
推論エンジンMAXの紹介
DeNA+GO AI技術共有会で発表したスライドです。
Ryosuke Kamesawa
July 22, 2024
Tweet
Share
More Decks by Ryosuke Kamesawa
See All by Ryosuke Kamesawa
ニューラルネットワークの量子化手法の紹介
emakryo
3
2.4k
MediaPipeの紹介
emakryo
0
34
Customizing Cargo for Cross Compiling
emakryo
0
25
Feature Store in DRIVE CHART
emakryo
0
34
Feature StoreをRustで実装した話
emakryo
0
34
なぜRustか?
emakryo
0
28
rustdef: Rust on Jupyter Notebook
emakryo
0
29
Cargo-makeを使ってみた
emakryo
0
200
Machine Learning on Graph Data @ICML2019
emakryo
0
15
Other Decks in Technology
See All in Technology
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
260
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
420
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
OpenAIの蒸留機能(Model Distillation)を使用して運用中のLLMのコストを削減する取り組み
pharma_x_tech
4
560
ハイテク休憩
sat
PRO
2
150
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
530
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
160
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
36
13k
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
460
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
Google Cloud で始める Cloud Run 〜AWSとの比較と実例デモで解説〜
risatube
PRO
0
100
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Music & Morning Musume
bryan
46
6.2k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Embracing the Ebb and Flow
colly
84
4.5k
Building Applications with DynamoDB
mza
91
6.1k
Statistics for Hackers
jakevdp
796
220k
A Philosophy of Restraint
colly
203
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Building an army of robots
kneath
302
44k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Transcript
AI 2024.07.18 Ryosuke Kamesawa GO株式会社 推論エンジンMAX by Modular
AI 2 Outline 01|推論エンジン MAX 02|Mojo言語 03|まとめ
AI 3 01 推論エンジン MAX
AI 4 Modularが開発している推論エンジン - ✅ 速い(らしい) - ✅ Python &
C API - ✅ PyTorch & ONNXのモデルが実行可能 - ✅ 無償利用可(条件付きで商用利用含め) - ❌ CPU (x64, ARM) のみ(GPU対応版は未公開) - ❌ ソースコードは非公開 MAXとは
AI 5 - Chris LattnerがCEOしている会社 - LLVM (Clang), Swift を作ったげきつよ開発者
- GoogleではTensorFlowのディレクター - 今のところMAX, Mojo以外のプロダクトはなさそう - ビジネスモデルはよくわからない - 推論エンドポイントSaaS? ちなみにModularって?
AI 6 公式サイトでの記述 どれくらい速い・・? https://www.modular.com/max
AI 7 速そうだけどよくわからない(たぶんLLMでのベンチマーク) → 自分たちのユースケース(CV)で試してみる 1. MobileNetV2 2. MobileNetV3 (large)
3. EfficientNet Lite0 4. ResNet50 5. YOLOv8 segmentation どれくらい速い・・?
AI 8 ベンチマーク
AI 9 - AWS EC2 (c6i.4xlarge); Ubuntu22.04 - モデル実装 -
Torchvision: MobileNetV2/MobileNetV3/ResNet50 - Timm: EfficientNet Lite0 - Ultralytics: YOLOv8 - 100回推論するのにかかった時間を測定 - MAX (ONNX/torchscript) - ONNX runtime - PyTorch ベンチマーク環境・条件 https://github.com/emakryo/max-benchmark
AI 10 - 軽量CVモデルではMAXは速くない - EfficientNet Lite/MobileNetV2, 3 - ターゲットとしていないので最適化されていない?
- 比較的重いモデルでは同じくらいか多少速い - ResNet50/YOLOv8 - モデル入力はtorchscriptの方が多少速い場合が多い - MAXは初回のコンパイルが遅い ベンチマーク結果まとめ
AI 11 02 Mojo言語
AI 12 Modularが開発しているプログラミング言語 MAXがMojoで実装されている - Python風の文法 - 静的型(型推論、ジェネリクス、トレイト) - コンパイル時定数
- オーナーシップとライフタイム - Pythonとの相互呼び出し - 拡張可能な最適化パス、アクセラレータ固有型(MLIR) Mojo言語
AI 13 サンプルコード
AI 14 AI技術スタックの複雑さの軽減、全体最適化 モチベーション https://www.modular.com/blog/mojo-llvm-2023
AI 15 - 簡単な用途には使えるがエコシステムは未成熟 - パッケージマネージャーがない - 頑張れば、できないことは基本的にない - システムプログラミング言語(e.g.
C++)として設計されている - 使いこなす(最適化)にはMLIR dialectの知識が必要 - MLIR (Multi-Level Intermediate Representation) - LLVM IRの一般化 - MLIR dialect - LLVM IRにおける命令セットを拡張したもの - 言語におけるライブラリに近い 使える?
AI 16 - Pythonの完全な置き換えにはならない - コンパイルが必要→遅いのでinteractiveな実行に不向き - CythonやC/C++での拡張モジュールの置き換えは可能 - Pythonに近い文法なのでとっつきやすいかも
- CUDAの置き換えがOSSとしてできれば Nvidia以外のGPUメーカーが参戦してくるかも 流行る?
AI 17 MAX: ニューラルネットワーク推論エンジン - (今のところ)LLMでは速い、軽量モデルには不向き - ONNX, PyTorch (torchscript)
を実行できる Mojo: コンパイル可能なPython風プログラミング言語 - AIの技術スタックを統合、最適化(ができるポテンシャル) - 未成熟だが技術的には面白い まとめ