Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
推論エンジンMAXの紹介
Search
Ryosuke Kamesawa
July 22, 2024
Technology
1
540
推論エンジンMAXの紹介
DeNA+GO AI技術共有会で発表したスライドです。
Ryosuke Kamesawa
July 22, 2024
Tweet
Share
More Decks by Ryosuke Kamesawa
See All by Ryosuke Kamesawa
ニューラルネットワークの量子化手法の紹介
emakryo
3
3.3k
MediaPipeの紹介
emakryo
0
72
Customizing Cargo for Cross Compiling
emakryo
0
35
Feature Store in DRIVE CHART
emakryo
0
57
Feature StoreをRustで実装した話
emakryo
0
46
なぜRustか?
emakryo
0
45
rustdef: Rust on Jupyter Notebook
emakryo
0
41
Cargo-makeを使ってみた
emakryo
0
440
Machine Learning on Graph Data @ICML2019
emakryo
0
35
Other Decks in Technology
See All in Technology
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
200
From Prompt to Product @ How to Web 2025, Bucharest, Romania
janwerner
0
120
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
140
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
160
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
23
17k
GopherCon Tour 概略
logica0419
2
190
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
100
関係性が駆動するアジャイル──GPTに人格を与えたら、対話を通してふりかえりを習慣化できた話
mhlyc
0
130
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
130
ZOZOのAI活用実践〜社内基盤からサービス応用まで〜
zozotech
PRO
0
170
生成AIで「お客様の声」を ストーリーに変える 新潮流「Generative ETL」
ishikawa_satoru
1
310
Access-what? why and how, A11Y for All - Nordic.js 2025
gdomiciano
1
110
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
How to Think Like a Performance Engineer
csswizardry
27
2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
A designer walks into a library…
pauljervisheath
209
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How GitHub (no longer) Works
holman
315
140k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Visualization
eitanlees
148
16k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
AI 2024.07.18 Ryosuke Kamesawa GO株式会社 推論エンジンMAX by Modular
AI 2 Outline 01|推論エンジン MAX 02|Mojo言語 03|まとめ
AI 3 01 推論エンジン MAX
AI 4 Modularが開発している推論エンジン - ✅ 速い(らしい) - ✅ Python &
C API - ✅ PyTorch & ONNXのモデルが実行可能 - ✅ 無償利用可(条件付きで商用利用含め) - ❌ CPU (x64, ARM) のみ(GPU対応版は未公開) - ❌ ソースコードは非公開 MAXとは
AI 5 - Chris LattnerがCEOしている会社 - LLVM (Clang), Swift を作ったげきつよ開発者
- GoogleではTensorFlowのディレクター - 今のところMAX, Mojo以外のプロダクトはなさそう - ビジネスモデルはよくわからない - 推論エンドポイントSaaS? ちなみにModularって?
AI 6 公式サイトでの記述 どれくらい速い・・? https://www.modular.com/max
AI 7 速そうだけどよくわからない(たぶんLLMでのベンチマーク) → 自分たちのユースケース(CV)で試してみる 1. MobileNetV2 2. MobileNetV3 (large)
3. EfficientNet Lite0 4. ResNet50 5. YOLOv8 segmentation どれくらい速い・・?
AI 8 ベンチマーク
AI 9 - AWS EC2 (c6i.4xlarge); Ubuntu22.04 - モデル実装 -
Torchvision: MobileNetV2/MobileNetV3/ResNet50 - Timm: EfficientNet Lite0 - Ultralytics: YOLOv8 - 100回推論するのにかかった時間を測定 - MAX (ONNX/torchscript) - ONNX runtime - PyTorch ベンチマーク環境・条件 https://github.com/emakryo/max-benchmark
AI 10 - 軽量CVモデルではMAXは速くない - EfficientNet Lite/MobileNetV2, 3 - ターゲットとしていないので最適化されていない?
- 比較的重いモデルでは同じくらいか多少速い - ResNet50/YOLOv8 - モデル入力はtorchscriptの方が多少速い場合が多い - MAXは初回のコンパイルが遅い ベンチマーク結果まとめ
AI 11 02 Mojo言語
AI 12 Modularが開発しているプログラミング言語 MAXがMojoで実装されている - Python風の文法 - 静的型(型推論、ジェネリクス、トレイト) - コンパイル時定数
- オーナーシップとライフタイム - Pythonとの相互呼び出し - 拡張可能な最適化パス、アクセラレータ固有型(MLIR) Mojo言語
AI 13 サンプルコード
AI 14 AI技術スタックの複雑さの軽減、全体最適化 モチベーション https://www.modular.com/blog/mojo-llvm-2023
AI 15 - 簡単な用途には使えるがエコシステムは未成熟 - パッケージマネージャーがない - 頑張れば、できないことは基本的にない - システムプログラミング言語(e.g.
C++)として設計されている - 使いこなす(最適化)にはMLIR dialectの知識が必要 - MLIR (Multi-Level Intermediate Representation) - LLVM IRの一般化 - MLIR dialect - LLVM IRにおける命令セットを拡張したもの - 言語におけるライブラリに近い 使える?
AI 16 - Pythonの完全な置き換えにはならない - コンパイルが必要→遅いのでinteractiveな実行に不向き - CythonやC/C++での拡張モジュールの置き換えは可能 - Pythonに近い文法なのでとっつきやすいかも
- CUDAの置き換えがOSSとしてできれば Nvidia以外のGPUメーカーが参戦してくるかも 流行る?
AI 17 MAX: ニューラルネットワーク推論エンジン - (今のところ)LLMでは速い、軽量モデルには不向き - ONNX, PyTorch (torchscript)
を実行できる Mojo: コンパイル可能なPython風プログラミング言語 - AIの技術スタックを統合、最適化(ができるポテンシャル) - 未成熟だが技術的には面白い まとめ