Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
推論エンジンMAXの紹介
Search
Ryosuke Kamesawa
July 22, 2024
Technology
1
560
推論エンジンMAXの紹介
DeNA+GO AI技術共有会で発表したスライドです。
Ryosuke Kamesawa
July 22, 2024
Tweet
Share
More Decks by Ryosuke Kamesawa
See All by Ryosuke Kamesawa
ニューラルネットワークの量子化手法の紹介
emakryo
3
3.4k
MediaPipeの紹介
emakryo
0
85
Customizing Cargo for Cross Compiling
emakryo
0
38
Feature Store in DRIVE CHART
emakryo
0
67
Feature StoreをRustで実装した話
emakryo
0
49
なぜRustか?
emakryo
0
54
rustdef: Rust on Jupyter Notebook
emakryo
0
49
Cargo-makeを使ってみた
emakryo
0
490
Machine Learning on Graph Data @ICML2019
emakryo
0
45
Other Decks in Technology
See All in Technology
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
2.1k
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
140
Eight Engineering Unit 紹介資料
sansan33
PRO
0
6.2k
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
170
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
420
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
640
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
160
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
490
Next.js 16の新機能 Cache Components について
sutetotanuki
0
210
Featured
See All Featured
Fireside Chat
paigeccino
41
3.8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
100
Design in an AI World
tapps
0
110
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
47
Leo the Paperboy
mayatellez
1
1.3k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
84
Ethics towards AI in product and experience design
skipperchong
1
160
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
How STYLIGHT went responsive
nonsquared
100
6k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
400
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
100
Transcript
AI 2024.07.18 Ryosuke Kamesawa GO株式会社 推論エンジンMAX by Modular
AI 2 Outline 01|推論エンジン MAX 02|Mojo言語 03|まとめ
AI 3 01 推論エンジン MAX
AI 4 Modularが開発している推論エンジン - ✅ 速い(らしい) - ✅ Python &
C API - ✅ PyTorch & ONNXのモデルが実行可能 - ✅ 無償利用可(条件付きで商用利用含め) - ❌ CPU (x64, ARM) のみ(GPU対応版は未公開) - ❌ ソースコードは非公開 MAXとは
AI 5 - Chris LattnerがCEOしている会社 - LLVM (Clang), Swift を作ったげきつよ開発者
- GoogleではTensorFlowのディレクター - 今のところMAX, Mojo以外のプロダクトはなさそう - ビジネスモデルはよくわからない - 推論エンドポイントSaaS? ちなみにModularって?
AI 6 公式サイトでの記述 どれくらい速い・・? https://www.modular.com/max
AI 7 速そうだけどよくわからない(たぶんLLMでのベンチマーク) → 自分たちのユースケース(CV)で試してみる 1. MobileNetV2 2. MobileNetV3 (large)
3. EfficientNet Lite0 4. ResNet50 5. YOLOv8 segmentation どれくらい速い・・?
AI 8 ベンチマーク
AI 9 - AWS EC2 (c6i.4xlarge); Ubuntu22.04 - モデル実装 -
Torchvision: MobileNetV2/MobileNetV3/ResNet50 - Timm: EfficientNet Lite0 - Ultralytics: YOLOv8 - 100回推論するのにかかった時間を測定 - MAX (ONNX/torchscript) - ONNX runtime - PyTorch ベンチマーク環境・条件 https://github.com/emakryo/max-benchmark
AI 10 - 軽量CVモデルではMAXは速くない - EfficientNet Lite/MobileNetV2, 3 - ターゲットとしていないので最適化されていない?
- 比較的重いモデルでは同じくらいか多少速い - ResNet50/YOLOv8 - モデル入力はtorchscriptの方が多少速い場合が多い - MAXは初回のコンパイルが遅い ベンチマーク結果まとめ
AI 11 02 Mojo言語
AI 12 Modularが開発しているプログラミング言語 MAXがMojoで実装されている - Python風の文法 - 静的型(型推論、ジェネリクス、トレイト) - コンパイル時定数
- オーナーシップとライフタイム - Pythonとの相互呼び出し - 拡張可能な最適化パス、アクセラレータ固有型(MLIR) Mojo言語
AI 13 サンプルコード
AI 14 AI技術スタックの複雑さの軽減、全体最適化 モチベーション https://www.modular.com/blog/mojo-llvm-2023
AI 15 - 簡単な用途には使えるがエコシステムは未成熟 - パッケージマネージャーがない - 頑張れば、できないことは基本的にない - システムプログラミング言語(e.g.
C++)として設計されている - 使いこなす(最適化)にはMLIR dialectの知識が必要 - MLIR (Multi-Level Intermediate Representation) - LLVM IRの一般化 - MLIR dialect - LLVM IRにおける命令セットを拡張したもの - 言語におけるライブラリに近い 使える?
AI 16 - Pythonの完全な置き換えにはならない - コンパイルが必要→遅いのでinteractiveな実行に不向き - CythonやC/C++での拡張モジュールの置き換えは可能 - Pythonに近い文法なのでとっつきやすいかも
- CUDAの置き換えがOSSとしてできれば Nvidia以外のGPUメーカーが参戦してくるかも 流行る?
AI 17 MAX: ニューラルネットワーク推論エンジン - (今のところ)LLMでは速い、軽量モデルには不向き - ONNX, PyTorch (torchscript)
を実行できる Mojo: コンパイル可能なPython風プログラミング言語 - AIの技術スタックを統合、最適化(ができるポテンシャル) - 未成熟だが技術的には面白い まとめ