Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ルベーグ測度の定義を整理する

 ルベーグ測度の定義を整理する

Etsuji Nakai

April 18, 2020
Tweet

More Decks by Etsuji Nakai

Other Decks in Science

Transcript

  1. ϧϕʔάଌ౓ͷఆٛΛ੔ཧ͢Δ
    தҪ ӻ࢘
    2022 ೥ 11 ݄ 25 ೔
    1 Կͷ࿩͔ͱݴ͏ͱ
    ݱ࣮ಀආͷͨΊʹɺීஈखͷ͔ͭͳ͍جૅ਺ֶͷษڧͰ΋͠Α͏͔ͱࢥ͍ɺ[1] ͷॻ੶ΛվΊͯಡΈ࢝Ίͨ
    ͱ͜Ζɺ๯಄ͷʮII ଌ౓ʯͷষͰɺRN ʹ͓͚Δϧϕʔάଌ౓ͷ࿩ͱɺRN ʹݶఆ͠ͳ͍Ұൠ࿦͕ฒྻʹٞ
    ࿦͞Ε͓ͯΓɺͪΐͬͱ಄͕ࠞཚͨ͠ͷͰɺ಄Λ੔ཧ͢ΔͨΊʹɺRN ʹݶఆ͠ͳ͍Ұൠ࿦ͷ෦෼Λ੔ཧͯ͠
    Έ·ͨ͠ɻͦͷ্ͰɺRN ʹಛԽͨ͠ɺϧϕʔάଌ౓͕ͲͷΑ͏ʹ౰ͯ͸·Δͷ͔ΛݟͯΈΑ͏ͱݴ͏Θ͚Ͱ
    ͢ɻ
    ʢݸʑͷఆཧͷূ໌͸ɺ΄ͱΜͲ͕ [1] ͷম͖௚͠Ͱಛʹ໨৽͍͠఺͸͋Γ·ͤΜɻ
    ʣ·ͨɺޙ൒෦෼Ͱ͸ɺ
    Lebesugue ͷ߲ผੵ෼ఆཧΛͳΔ΂͘࠷୹ͷܦ࿏Ͱಋ͍͍ͯ·͢ɻ
    2 ଌ౓ʹؔ࿈͢ΔҰൠ࿦
    ͜͜Ͱ͸·ͣɺRN ʹ͓͚Δଌ౓ͷఆٛ͸ஔ͍͓͖ͯɺۭؒ X ʹґଘ͠ͳ͍Ұൠ࿦Λ·ͱΊ·͢ɻ
    2.1 ू߹ʹؔ͢Δఆٛ
    ఆٛ 1 ۭؒ X ͷ෦෼ू߹ͷ଒ F ͕࣍ͷ৚݅Λຬͨ࣌͢ɺ༗ݶՃ๏଒ͱ͍͏ɻ
    1. ϕ ∈ F
    2. A ∈ F ⇒ AC ∈ F
    3. A, B ∈ F ⇒ A ∪ B ∈ F
    ิू߹ʢACʣͱ࿨ू߹ʢA ∪ Bʣͷ૊Έ߹ΘͤʹΑͬͯɺੵू߹ʢA ∩ B = (AC ∪ BC)Cʣ΍ࠩू߹
    ʢA − B = A ∩ BCʣ͕ܭࢉͰ͖Δ͜ͱ͔Βɺ༗ݶՃ๏଒ F Ͱ͸ɺF ʹଐ͢ΔݩͲ͏͠ͷ࿨ɺࠩɺੵΛ༗ݶճ
    ԋࢉͨ͠΋ͷ΋ F ͷݩʹͳΓ·͢ɻ
    ఆٛ 2 ۭؒ X ͷ෦෼ू߹ͷ଒ B ͕࣍ͷ৚݅Λຬͨ࣌͢ɺ׬શՃ๏଒ɺ΋͘͠͸ɺσ-Ճ๏଒ͱ͍͏ɻ
    1. ϕ ∈ B
    2. E ∈ B ⇒ EC ∈ B
    3. E1
    , E2
    , · · · ∈ B ⇒


    n=1
    En
    ∈ B
    1

    View Slide

  2. ༗ݶՃ๏଒ͱಉ༷ʹɺσ-Ճ๏଒ B Ͱ͸ɺB ͷݩͲ͏͠ͷ࿨ɺࠩɺੵΛߴʑՃࢉແݶճɺԋࢉͨ͠΋ͷ΋ B
    ͷݩʹͳΓ·͢ɻ
    2.2 ू߹ؔ਺ʹؔ͢Δఆٛ
    ఆٛ 3 ۭؒ X ͱͦͷ෦෼ू߹ͷ༗ݶՃ๏଒ F ͕͋ΓɺF-ू߹ؔ਺ m(A) ͕࣍ͷ৚݅Λຬͨ࣌͢ɺ༗ݶՃ๏
    తଌ౓ͱ͍͏ɻ
    1. m(ϕ) = 0
    2. A ∈ F ⇒ 0 ≤ m(A) ≤ ∞
    3. A, B ∈ F, A ∩ B = ϕ ⇒ m(A + B) = m(A) + m(B)
    ఆٛ 4 ༗ݶՃ๏଒ F ্ͷ༗ݶՃ๏తଌ౓ m ͕ɺ͞Βʹ࣍ͷ৚݅Λຬͨ࣌͢ɺ༗ݶՃ๏଒ F ্ͷ׬શՃ๏
    తଌ౓ͱ͍͏ɻ
    A1
    , A2
    , · · · ∈ F, Ai
    ∩ Aj
    = ϕ (i ̸= j), A =


    n=1
    An
    ∈ F ⇒ m(A) =


    n=1
    m(An
    )
    ఆٛ 5 ۭؒ X ͱͦͷ෦෼ू߹ͷ σ-Ճ๏଒ B ͕͋ΓɺB-ू߹ؔ਺ µ(A) ͕࣍ͷ৚݅Λຬͨ࣌͢ɺB Ͱఆٛ
    ͞Εͨଌ౓ͱ͍͏ɻ
    1. µ(ϕ) = 0
    2. A ∈ B ⇒ 0 ≤ µ(A) ≤ ∞
    3. A1
    , A2
    , · · · ∈ B, Ai
    ∩ Aj
    = ϕ (i ̸= j) ⇒ µ
    (


    n=1
    An
    )
    =


    n=1
    µ(An
    )
    ఆٛ 4 ͱఆٛ 5 ͸ɺू߹ؔ਺ͷఆٛҬ͕ҧ͏఺ʹ஫ҙ͍ͯͩ͘͠͞ɻఆٛ 4 ͷ׬શՃ๏తଌ౓ʹ͓͍ͯɺಛ
    ʹఆٛҬ͕ σ-Ճ๏଒Ͱ΋͋Δ৔߹͕ɺఆٛ 5 Ͱ͍͏ʮଌ౓ʯʹͳΓ·͢ɻ
    ͳ͓ɺ༗ݶՃ๏తଌ౓ʹ͍ͭͯ͸ɺ࣍ͷੑ࣭͕੒Γཱͪ·͢ɻ
    ఆཧ 1 ༗ݶՃ๏଒ F ্ͷ༗ݶՃ๏తଌ౓ m ʹ͍ͭͯɺ͕࣍੒Γཱͭɻ
    1. A1
    , · · · , An
    ∈ F, Ai
    ∩ Aj
    = ϕ (i ̸= j) ⇒ m
    (
    n

    k=1
    Ak
    )
    =
    n

    k=1
    m(Ak
    ) ɹʢ༗ݶՃ๏ੑʣ
    2. A, B ∈ F, A ⊃ B ⇒ m(A) ≥ m(B) ɹʢ୯ௐੑʣ
    3. A1
    , · · · , An
    ∈ F ⇒ m
    (
    n

    k=1
    Ak
    )

    n

    k=1
    m(Ak
    ) ɹʢྼՃ๏ੑʣ
    ʢূ໌ʣ
    1. ͸ఆٛ 3 ͷ 3. Λ༗ݶճద༻͢Ε͹Α͍ɻ2. ͸ɺA ⊃ B ͷ࣌ɺA = (A − B) + B ͱදͯ͠ɺ༗ݶՃ๏ੑ
    2

    View Slide

  3. Λద༻͢Δͱɺ
    m(A) = m(A − B) + m(B) ≥ m(B) (∵ m(A − B) ≥ 0)
    ͕ಘΒΕΔɻ
    3. ͸ɺA1
    , · · · , An
    ʹରͯ͠ɺ
    B1
    = A1
    , Bn
    = An

    n−1

    k=1
    Ak
    (n = 2, 3, · · · )
    ͱஔ͘ͱɺB1
    , · · · , Bn
    ͸ޓ͍ʹૉͳू߹ͰɺBk
    ⊂ Ak
    ɺ͓Αͼɺ
    n

    k=1
    Bk
    =
    n

    k=1
    Ak
    ͕੒Γཱͭɻैͬͯɺm
    ͷ༗ݶՃ๏ੑͱ୯ௐੑΛ༻͍ͯɺ
    m
    (
    n

    k=1
    Ak
    )
    = m
    (
    n

    k=1
    Bk
    )
    =
    n

    k=1
    m(Bk
    ) ≤
    n

    k=1
    m(Ak
    )
    ͕੒Γཱͭɻ ˙
    ಉ༷ʹͯ͠ɺଌ౓ʹ͍ͭͯɺ࣍ͷੑ࣭͕੒Γཱͪ·͢ɻ
    ఆཧ 2 σ-Ճ๏଒ B ্ͷଌ౓ µ ʹ͍ͭͯɺ͕࣍੒Γཱͭɻ
    1. A, B ∈ B, A ⊃ B ⇒ µ(A) ≥ µ(B) ɹʢ୯ௐੑʣ
    2. A1
    , A2
    , · · · ∈ B ⇒ µ
    (


    k=1
    Ak
    )



    k=1
    µ(Ak
    ) ɹʢྼՃ๏ੑʣ
    ʢূ໌ʣ
    1. ͸ఆཧ 1 ͷ 2. ͱಉ༷ɻ2. ͸ఆཧ 1 ͷ 3. Ͱ n → ∞ ͷۃݶΛऔΕ͹ྑ͍ɻ ˙
    2.3 ֎ଌ౓Λܦ༝ͨ͠ଌ౓ͷߏ੒ํ๏
    ఆٛ 6 ۭؒ X ͷ͢΂ͯͷ෦෼ू߹ A ʹରͯ͠ఆٛ͞Εͨू߹ؔ਺ Γ(A) ͕ɺ࣍ͷ৚݅Λຬͨ࣌͢ɺ
    Carath´
    eodory ֎ଌ౓ͱ͍͏*1ɻ
    1. Γ(ϕ) = 0, 0 ≤ Γ(A) ≤ ∞
    2. A ⊂ B ⇒ Γ(A) ≤ Γ(B) ɹʢ୯ௐੑʣ
    3. Γ
    (


    n=1
    An
    )



    n=1
    Γ(An
    ) ɹʢྼՃ๏ੑʣ
    ఆٛ 7 ۭؒ X ʹ֎ଌ౓ Γ ͕ఆٛ͞Ε͍ͯΔ࣌ɺ෦෼ू߹ E ⊂ X ͕࣍ͷ৚݅Λຬͨ࣌͢ɺE Λ Γ-Մଌू
    ߹ͱ͍͏ɻ
    A ⊂ X ⇒ Γ(A) = Γ(A ∩ E) + Γ(A ∩ EC) (1)
    ఆཧ 3 Γ-Մଌू߹ E ͷ৚݅͸ɺ࣍ͱಉ஋Ͱ͋Δɻ
    *1 ͜ΕҎ߱͸ɺ୯ʹ֎ଌ౓ͱݴ͑͹ɺCarath´
    eodory ֎ଌ౓Λࢦ͢΋ͷͱ͠·͢ɻ
    3

    View Slide

  4. ೚ҙͷ A1
    ⊂ E ͱ೚ҙͷ A2
    ⊂ EC ʹରͯ͠ɺΓ(A1
    + A2
    ) = Γ(A1
    ) + Γ(A2
    )
    ʢূ໌ʣ
    (1) ͕੒Γཱͭ࣌ɺ೚ҙͷ A1
    ⊂ E ͱ೚ҙͷ A2
    ⊂ EC ʹରͯ͠ɺA = A1
    + A2
    ͱͯ͠ (1) Λద༻͢Δ
    ͱɺΓ(A1
    + A2
    ) = Γ(A1
    ) + Γ(A2
    ) ͕ಘΒΕΔɻ൓ରʹɺఆཧͷ৚͕݅੒Γཱͭ࣌ɺ೚ҙͷ A ⊂ X ʹରͯ͠ɺ
    A1
    = A ∩ E ͱ A2
    = A ∩ EC ͱͯ͠ఆཧͷ৚݅Λద༻͢Δͱ (1) ͕ಘΒΕΔɻ ˙
    ͳ͓ɺ֎ଌ౓ Γ ͷྼՃ๏ੑʢఆٛ 6 ͷ 3.ʣΑΓɺ೚ҙͷ A1
    , A2
    ⊂ X (A1
    ∩ A2
    = ϕ) ʹରͯ͠ɺΓ(A1
    ) +
    Γ(A2
    ) ≥ Γ(A1
    + A2
    ) ͕੒ΓཱͭͷͰɺE ⊂ X ͕ Γ-Մଌू߹Ͱ͋Δ͜ͱΛࣔ͢ʹ͸ɺఆཧ 3 ʹ͓͍ͯɺ
    Γ(A1
    ) + Γ(A2
    ) ≤ Γ(A1
    + A2
    ) ͕ࣔͤΕ͹े෼Ͱ͢ɻಉ༷ʹɺ೚ҙͷ A, E ⊂ X ʹ͍ͭͯɺ֎ଌ౓ Γ ͷྼՃ
    ๏ੑ͔Β͕࣍੒Γཱͪ·͢ɻ
    Γ(A ∩ EC) + Γ(A ∩ E) ≥ Γ((A ∩ EC) ∪ (A ∩ E)) = Γ(A)
    ͕ͨͬͯ͠ɺఆٛ 7 ʹ͓͍ͯ΋ɺΓ(A) ≥ Γ(A ∩ EC) + Γ(A ∩ E) ͕ࣔͤΕ͹े෼Ͱ͢ɻ
    ͜ͷޙɺຊઅͰ͸ɺ༗ݶՃ๏తଌ౓ m ͔Β֎ଌ౓ Γ Λߏ੒Ͱ͖Δ͜ͱɺͦͯ͠ɺΓ-Մଌू߹Λ͢΂ͯूΊ
    ͨू߹଒ MΓ
    ͸ σ-Ճ๏଒ʹͳΓɺΓ ͸ MΓ
    ্ͷଌ౓ʹͳΔ͜ͱΛॱΛ௥ͬͯূ໌͠·͢ɻ͜ΕʹΑΓɺ೚ҙ
    ͷۭؒ X ʹ͓͍ͯɺ༗ݶՃ๏తଌ౓ m Λఆٛ͢Ε͹ɺଌ౓ µ ʹࣗવʹ֦ுͰ͖Δ͜ͱʹͳΓ·͢ɻ
    ఆཧ 4 F Λ X ͷ෦෼ू߹ͷ༗ݶՃ๏଒ɺm(E) Λ F ্ͷ༗ݶՃ๏తଌ౓ͱ͢Δɻ͜ͷ࣌ɺ࣍ͷ 2 ͕ͭ੒Γ
    ཱͭɻ
    1. ೚ҙͷ A ⊂ X ʹରͯ͠ɺߴʑՃࢉແݶݸͷ En
    ∈ F Ͱ A Λ෴͍ʢA ⊂


    n=1
    En
    ʣ
    ɺ͢΂ͯͷ෴͍ํʹ
    ର͢ΔԼݶͰɺ࣍ͷू߹ؔ਺ Γ(A) Λఆٛ͢Δͱɺ͜Ε͸֎ଌ౓ʹͳΔɻ
    Γ(A) = inf
    {


    n=1
    m(En
    )
    }
    (2)
    2. ಛʹ m(E) ͕༗ݶՃ๏଒ F ্Ͱ׬શՃ๏తͰ͋Ε͹ɺ͕࣍੒Γཱͭɻ
    E ∈ F ⇒ Γ(E) = m(E)
    ʢূ໌ʣ
    1. ֎ଌ౓ͷ 3 ͭͷ৚݅Λॱʹࣔ͢ɻ
    1. Γ(ϕ) = 0, 0 ≤ Γ(A) ≤ ∞
    ɹ͜Ε͸ɺ(2) ͷఆٛΑΓࣗ໌ʹ੒Γཱͭɻ
    2. A ⊂ B ⇒ Γ(A) ≤ Γ(B)
    ɹ En
    Λ B ͷ೚ҙͷඃ෴ B ⊂


    n=1
    En
    ͱ͢ΔͱɺA ⊂ B ΑΓɺA ⊂


    n=1
    En
    ͕੒Γཱͭɻ͜ͷ࣌ɺA
    4

    View Slide

  5. ͷ͢΂ͯͷඃ෴ʹର͢ΔԼݶͱͯ͠ɺF(A) ͕ఆٛ͞ΕΔ͜ͱ͔Βɺ
    Γ(A) ≤


    n=1
    m(En
    )
    ͕੒Γཱͭɻ্ࣜӈลͰ B ͷ͢΂ͯͷඃ෴ʹ͍ͭͯͷԼݶΛऔΔͱ Γ(B) ʹͳΔͷͰɺΓ(A) ≤ Γ(B)
    ͕੒Γཱͭɻ
    3. Γ
    (


    n=1
    An
    )



    n=1
    Γ(An
    )
    ɹ A1
    , A2
    , · · · ⊂ X ͕༩͑ΒΕͨ࣌ɺ೚ҙͷ ϵ > 0 ʹରͯ͠ɺͦΕͧΕͷ An
    ʹ͍ͭͯɺ
    Γ(An
    ) +
    ϵ
    2n



    k=1
    m(Enk
    )
    ͱͳΔඃ෴ An



    k=1
    Enk
    ͕ଘࡏ͢Δɻ͜ͷ࣌ɺ


    n=1
    An



    n=1


    k=1
    Enk
    Ͱ͋Γɺ


    n=1


    k=1
    Enk
    ͸


    n=1
    An
    ͷඃ෴ʹͳ͍ͬͯΔ͜ͱ͔Βɺ
    Γ
    (


    n=1
    An
    )



    n=1


    k=1
    m(Enk
    ) ≤


    n=1
    {
    Γ(An
    ) +
    ϵ
    2n
    }
    =


    n=1
    Γ(An
    ) + ϵ
    ͕੒Γཱͭɻϵ > 0 ͸೚ҙͰ͋Δ͜ͱ͔Βɺϵ → 0 ͷۃݶʹΑΓɺ
    Γ
    (


    n=1
    An
    )



    n=1
    Γ(An
    )
    ͕ಘΒΕΔɻ
    2. E ͸ E ࣗ਎ͷඃ෴Ͱ͋Δ͔ΒɺΓ(E) ≤ m(E) ͸ࣗ໌ɻͦ͜Ͱɺ൓ର޲͖ͷෆ౳߸Λࣔ͢ɻ
    En
    Λ E ͷ೚ҙͷඃ෴ E ⊂


    n=1
    En
    ͱ͢Δ࣌ɺਤ 1 ͷ༷ʹɺޓ͍ʹૉͳू߹ʹΑΔඃ෴ Fn
    Λ࠶ߏ੒͢Δɻ
    ۩ମతʹ͸ɺ࣍ͷ༷ʹఆٛ͢Ε͹Α͍ɻ
    F1
    = E1
    ∩ E, Fn
    =
    (
    En

    n−1

    k=1
    Ek
    )
    ∩ E (n = 2, 3, · · · )
    ͢ΔͱɺFn
    ⊂ En
    ɺFn
    ∈ FɺE =


    n=1
    Fn
    ͕੒Γཱͪɺm(E) ͕༗ݶՃ๏଒ F ্Ͱ׬શՃ๏తͰ͋Δ͜ͱ
    ͔Βɺ࣍ͷؔ܎͕ಘΒΕΔɻ
    m(E) =


    n=1
    m(Fn
    ) ≤


    n=1
    m(En
    )
    ্ࣜӈลͰ E ͷ͢΂ͯͷඃ෴ʹ͍ͭͯͷԼݶΛऔΔͱɺm(E) ≤ Γ(E) ͕ಘΒΕΔɻ ˙
    ͜ΕͰɺ༗ݶՃ๏తଌ౓ m ͔Β֎ଌ౓ Γ ͕ߏ੒Ͱ͖Δ͜ͱ͕෼͔Γ·ͨ͠ɻ(2) ͷఆٛ͸ɺू߹ A ͷ֎
    ଌ౓ Γ(A) Λʮ֎ଆ͔Β෴ͬͨू߹ͷଌ౓


    n=1
    m(En
    )ʯͰۙࣅ্ͨ͠ͰɺͦͷԼݶΛऔͬͨ΋ͷͱߟ͑ΒΕ
    ·͢ɻ
    ଓ͍ͯɺΓ-Մଌू߹Λ͢΂ͯूΊͨू߹଒ MΓ
    ͸ σ-Ճ๏଒ʹͳΔ͜ͱΛূ໌͠·͢ɻ
    5

    View Slide

  6. ਤ 1 ޓ͍ʹૉͳू߹ʹΑΔඃ෴ͷߏ੒
    ิ୊ 1 Γ-Մଌू߹Λ͢΂ͯूΊͨू߹଒ MΓ
    ʹ͍ͭͯɺ͕࣍੒Γཱͭɻ
    1. E ∈ MΓ
    ⇒ EC ∈ MΓ
    2. E, F ∈ MΓ
    ⇒ E − F ∈ MΓ
    , E ∩ F ∈ MΓ
    3. E1
    , E2
    , · · · , En
    ∈ MΓ

    n

    k=1
    Ek
    ∈ MΓ
    ,
    n

    k=1
    Ek
    ∈ MΓ
    ʢূ໌ʣ
    1. Γ-Մଌू߹ͷఆٛʢఆٛ 7ʣ͸ɺE ͱ EC ʹ͍ͭͯରশͳͷͰ੒Γཱͭɻ
    2. ͸͡Ίʹɺ
    E, F ∈ MΓ
    ͱͨ࣌͠ʹɺ
    E ∩F ͕ఆཧ 3 ͷ৚݅Λຬͨ͢͜ͱΛࣔ͢ɻࠓɺ
    ೚ҙͷ A ⊂ E ∩F
    ͱ೚ҙͷ B ⊂ (E ∩ F)C = EC ∪ FC ʹରͯ͠ɺB1
    = B ∩ FɺB2
    = B ∩ FC ͱ͓͘ͱɺ͕࣍੒Γཱͭɻ
    Γ(A) + Γ(B) = Γ(A) + Γ(B1
    + B2
    )
    ≤ Γ(A) + Γ(B1
    ) + Γ(B2
    ) (∵ ֎ଌ౓ͷྼՃ๏ੑ)
    = Γ(A + B1
    ) + Γ(B2
    )
    (
    ∵ A ⊂ E, B1
    ⊂ EC, E ∈ MΓ
    )
    = Γ(A + B1
    + B2
    )
    (
    ∵ A + B1
    ⊂ F, B2
    ⊂ FC, F ∈ MΓ
    )
    = Γ(A + B)
    ɹҰํɺΓ ͷྼՃ๏ੑΑΓɺΓ(A) + Γ(B) ≥ Γ(A + B) ͳͷͰɺ͜ΕΒΛ߹ΘͤͯɺΓ(A) + Γ(B) =
    Γ(A + B) ͱͳΓɺఆཧ 3 ͷ৚͕݅੒Γཱͭɻ͕ͨͬͯ͠ɺE ∩ F ∈ MΓ
    ͱͳΔɻ͜ΕΑΓɺ1. ͷ݁
    Ռͱ߹ΘͤͯɺE − F = E ∩ FC ∈ MΓ
    ΋੒Γཱͭɻ
    3. 2. ͷ݁ՌΛ༗ݶճద༻͢Ε͹ɺ
    n

    k=1
    Ek
    ∈ MΓ
    ͕੒Γཱͭɻ·ͨɺυɾϞϧΨϯͷެࣜʹΑΓɺ1. ͷ݁
    Ռͱ߹Θͤͯɺ
    n

    k=1
    Ek
    =
    (
    n

    k=1
    EC
    k
    )C
    ∈ MΓ
    ͕੒Γཱͭɻ ˙
    6

    View Slide

  7. ఆཧ 5 Γ-Մଌू߹ E ⊂ X Λ͢΂ͯूΊͨू߹଒ MΓ
    ͸ɺσ-Ճ๏଒Ͱ͋Δɻ
    ʢূ໌ʣ
    σ-Ճ๏଒ͷ৚݅ (ఆٛ 2) Λॱʹ֬ೝ͢Δɻ1. ͷ ϕ ∈ MΓ
    ͸ࣗ໌ɻ2. ͸ิ୊ 1 ͷ 1. ΑΓ੒Γཱͭɻ3. ʹ
    ͍ͭͯ͸ɺE1
    , E2
    , · · · ∈ MΓ
    ͕༩͑ΒΕͨͱͯ͠ɺ
    F1
    = E1
    , Fn
    = En

    n−1

    k=1
    Ek
    (n = 2, 3, · · · )
    ͱ͓͘ͱɺF1
    , F2
    , · · · ͸ޓ͍ʹૉͳू߹Ͱɺ


    n=1
    En
    =


    n=1
    Fn
    ͕੒Γཱͭɻͦ͜ͰɺS =


    n=1
    Fn
    ∈ MΓ
    Λࣔ͢ɻͳ͓ɺิ୊ 1 ʹΑΓɺF1
    , F2
    , · · · ∈ MΓ
    ͕੒Γཱͭɻ
    ·ͣɺ४උͱͯ͠ɺn = 1, 2, · · · ʹ͍ͭͯɺ೚ҙͷ A ⊂ X ʹରͯ͠ɺ
    Γ(A) ≥
    n

    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC) (3)
    ͕੒Γཱͭ͜ͱΛ਺ֶతؼೲ๏Ͱࣔ͢ɻn = 1 ͷ৔߹͸ɺ࣍ͷܭࢉʹΑΓ੒Γཱͭɻ
    Γ(A) = Γ(A ∩ F1
    ) + Γ(A ∩ FC
    1
    ) (∵ F1
    ∈ MΓ
    )
    ≥ Γ(A ∩ F1
    ) + Γ(A ∩ SC)
    (
    ∵ FC
    1
    ⊃ SC, ֎ଌ౓ͷ୯ௐੑ
    )
    (3) ͕ n ·Ͱ੒ΓཱͭͱԾఆͯ͠ɺn + 1 ͷ৔߹Λࣔ͢ɻ(3) Ͱ A Λ A ∩ FC
    n+1
    ʹஔ͖׵͑ͨ΋ͷΛߟ͑
    Δͱɺ
    Γ(A ∩ FC
    n+1
    ) ≥
    n

    k=1
    Γ(A ∩ FC
    n+1
    ∩ Fk
    ) + Γ(A ∩ FC
    n+1
    ∩ SC)
    =
    n

    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC)
    (
    ∵ Fk
    ⊂ FC
    n+1
    , SC ⊂ FC
    n+1
    )
    ͕ಘΒΕΔɻ͜ΕΛ༻͍ͯɺ
    F(A) = Γ(A ∩ Fn+1
    ) + Γ(A ∩ FC
    n+1
    ) (∵ Fn+1
    ∈ MΓ
    )
    ≥ Γ(A ∩ Fn+1
    ) +
    n

    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC)
    =
    n+1

    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC)
    ͱͳΓɺn + 1 Ͱ΋ (3) ͕੒Γཱͭɻ
    (3) Ͱ n → ∞ ͷۃݶΛऔΔͱɺ͕࣍ಘΒΕΔɻ
    Γ(A) ≥


    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC)
    7

    View Slide

  8. ͜ͷӈล͸ɺ֎ଌ౓ͷྼՃ๏ੑΛ༻͍Δͱɺ࣍ͷ༷ʹมܗͰ͖Δɻ
    Γ(A) ≥


    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC)
    ≥ Γ
    (
    A ∩


    k=1
    Fk
    )
    + Γ(A ∩ SC)
    = Γ(A ∩ S) + Γ(A ∩ SC) (4)
    ҰํɺA = (A ∩ S) + (A ∩ SC)ɺ͓Αͼɺ֎ଌ౓ͷྼՃ๏ੑΑΓɺ
    Γ(A) ≤ Γ(A ∩ S) + Γ(A ∩ SC)
    Ͱ͋ΔͷͰɺ͜ΕΒΛ߹Θͤͯɺ
    Γ(A) = Γ(A ∩ S) + Γ(A ∩ SC)
    ͱͳΔɻ͜Ε͕೚ҙͷ A ⊂ X ʹ͍ͭͯ੒Γཱͭ͜ͱ͔ΒɺS ∈ MΓ
    Ͱ͋Δɻ ˙
    ࠷ޙʹɺ֎ଌ౓ Γ ͸ɺσ-Ճ๏଒ MΓ
    ্Ͱଌ౓ͷ৚݅ʢఆٛ 5ʣΛຬͨ͢͜ͱΛࣔ͠·͢ɻ
    ఆཧ 6 ֎ଌ౓ Γ ͸ɺσ-Ճ๏଒ MΓ
    ্ͷଌ౓Ͱ͋Δɻ
    ʢূ໌ʣ
    Γ(ϕ) = 0ɺ͓Αͼɺ0 ≤ Γ(A) ≤ ∞ ͸ࣗ໌ɻͦ͜Ͱɺޓ͍ʹૉͳ F1
    , F2
    , · · · ∈ MΓ
    ʹରͯ͠ɺ
    Γ
    (


    n=1
    Fn
    )
    =


    n=1
    Γ(Fn
    )
    Λࣔ͢ɻ͜ͷ Fn
    ʹ͸ɺఆཧ 5 ͷূ໌Ͱ F1
    , F2
    , · · · ʹ༻͍ͨ΋ͷͱಉٞ͡࿦͕ద༻Ͱ͖ͯɺ
    S =


    n=1
    Fn
    ͱͯ͠ɺఆཧ 5 ͷূ໌ʹ͓͚Δ (4) ΑΓɺ࣍ͷؔ܎͕੒Γཱͭɻ
    Γ(A) ≥


    k=1
    Γ(A ∩ Fk
    ) + Γ(A ∩ SC) ≥ Γ(A ∩ S) + Γ(A ∩ SC)
    ͜͜Ͱɺಛʹ A = S ͷ৔߹Λߟ͑Δͱɺ
    Γ(S) ≥
    n

    k=1
    Γ(Fn
    ) ≥ Γ(S)
    ͱͳΓɺΓ(S) =
    n

    k=1
    Γ(Fn
    ) ͕ಘΒΕΔɻ ˙
    8

    View Slide

  9. 2.4 ଌ౓ͷ׬උੑ
    Ұൠʹɺۭؒ X ্ͷ σ-Ճ๏଒ B ͱ B Ͱఆٛ͞Εͨଌ౓ µ ͕͋Δ࣌ɺ3 ͭ૊ (X, B, µ) Λଌ౓ۭؒͱݺ
    ͼɺB ʹଐ͢Δू߹Λ µ-Մଌू߹ͱݺͼ·͢ɻͦͯ͠ɺµ(B) = 0 Ͱ͋Δ µ-Մଌू߹ B ʹ͍ͭͯɺ೚ҙͷ෦
    ෼ू߹ A ⊂ B ͕ µ-Մଌू߹ʹͳΔ࣌ɺଌ౓ۭؒ (X, B, µ) Λ׬උͰ͋Δͱ͍͍·͢ɻͳ͓ɺA ͕ µ-Մଌू
    ߹Ͱ͋Ε͹ɺµ(A) = µ(B) − µ(B − A) ≤ µ(B) = 0 ͕੒Γཱͭ͜ͱ͔Βɺµ(A) = 0 ͕ݴ͑·͢ɻ͕ͨͬ͠
    ͯɺ׬උͳଌ౓ۭؒͷ৚݅͸ɺ
    ʮଌ౓ 0 ͷ µ-Մଌू߹ͷ೚ҙͷ෦෼ू߹͕ଌ౓ 0 ͷ µ-Մଌू߹ʹͳΔ͜ͱʯͱ
    ݴ͍׵͑ͯ΋ߏ͍·ͤΜɻ
    Ұൠʹ͸ɺ׬උͰͳ͍ଌ౓ۭؒ΋ଘࡏ͠·͕͢ɺ࣍ͷఆཧ͕ࣔ͢Α͏ʹɺલઅͷखଓ͖Λ༻͍ͯ֎ଌ౓͔Β
    ఆٛ͞Εͨଌ౓ۭؒ͸ɺඞͣ׬උʹͳΓ·͢ɻ
    ఆཧ 7 ۭؒ X Ͱఆٛ͞Εͨ Γ-Մଌू߹ B ͕ Γ(B) = 0 Λຬͨ࣌͢ɺ೚ҙͷ E ⊂ B ͸ Γ-Մଌू߹Ͱ͋Δɻ
    (ূ໌)
    ֎ଌ౓ͷ୯ௐੑΑΓ Γ(E) ≤ Γ(B) = 0 ͳͷͰɺΓ(E) = 0 ͕੒Γཱͭɻ͜ͷ࣌ɺ೚ҙͷ A ⊂ X ʹରͯ͠ɺ
    ֎ଌ౓ͷ୯ௐੑΑΓ Γ(A ∩ E) ≤ Γ(E) = 0 ͳͷͰɺ Γ(A ∩ E) = 0 Ͱ͋Γɺ͜ΕΑΓ࣍ͷؔ܎͕੒Γཱͭɻ
    Γ(A) ≥ Γ(A ∩ EC) = Γ(A ∩ EC) + Γ(A ∩ E)
    ͜͜Ͱ࠷ॳͷෆ౳߸͸ɺ΍͸Γ֎ଌ౓ͷ୯ௐੑʹΑΔɻҰํɺ֎ଌ౓ͷྼՃ๏ੑΑΓɺٯ޲͖ͷෆ౳ࣜ΋੒
    Γཱͭɻ
    Γ(A ∩ EC) + Γ(A ∩ E) ≥ Γ((A ∩ EC) ∪ (A ∩ E)) = Γ(A)
    ͕ͨͬͯ͠ɺΓ(A) = Γ(A ∩ EC) + Γ(A ∩ E) Ͱ͋ΓɺE ͸ Γ-Մଌू߹Ͱ͋Δɻ ˙
    ࣍ষͰ͸ɺϢʔΫϦουۭؒ RN ʹ͓͚Δ Lebesgue ଌ౓Λఆٛ͠·͕͢ɺ͜Ε͸ɺ֎ଌ౓͔Βఆٛ͞ΕΔ
    ͨΊ׬උͳଌ౓ۭؒʹͳΓ·͢ɻ
    ࣍ʹɺ׬උͰͳ͍ଌ౓ۭؒΛ֦ுͯ͠ɺ׬උͳଌ౓ۭؒΛߏ੒͢Δखଓ͖Λઆ໌͠·͢ɻ͸͡Ίʹɺू߹ A
    ͱू߹ B ͷରশࠩ A ⊖ B Λ࣍Ͱఆٛ͠·͢ɻ
    A ⊖ B = (A − B) + (B − A) = (A ∪ B) − (A ∩ B)
    ରশࠩ͸ɺ࣍ͷؔ܎Λຬͨ͠·͢ɻ
    AC ⊖ BC = A ⊖ B
    (A1
    ∪ A2
    ) ⊖ (B1
    ∪ B2
    ) ⊂ (A1
    ⊖ B1
    ) ∪ (A2
    ⊖ B2
    )
    ࣍ʹɺ
    ʢ׬උͱ͸ݶΒͳ͍ʣଌ౓ۭؒ (X, B, µ) ʹ͓͍ͯɺX ͷ෦෼ू߹ E Ͱɺ࣍ͷ৚݅Λຬͨ͢΋ͷશ
    ମΛ B ͱ͠·͢ɻ
    E ⊖ B ⊂ N Ͱɺ
    µ(N) = 0 ͱͳΔɺ
    B, N ∈ B ͕ଘࡏ͢Δ (5)
    9

    View Slide

  10. E ∈ B ͷ৔߹͸ɺB = E, N = ϕ ͱऔΕ͹Α͍ͷͰɺB ⊃ B ͕੒Γཱͪ·͢ɻ·ͨɺE ∈ B Ͱ͋Δ࣌ɺ
    ೚ҙͷ෦෼ू߹ E′ ⊂ E ʹ͍ͭͯɺE′ ⊖ B ⊂ E ⊖ B Ͱ͋Δ͜ͱ͔ΒɺE′ ∈ B ͱͳΓ·͢ɻ͕ͨͬͯ͠ɺB
    ্Ͱఆٛ͞Εͨଌ౓ µ Λ B ্ʹ֦ு͢Δ͜ͱ͕Ͱ͖Ε͹ɺ͜Ε͸׬උͳଌ౓ۭؒʹͳΓ·͢ɻͳ͓ɺݩͷ
    ଌ౓ۭ͕ؒ׬උͳ৔߹͸ɺB = B ͱͳΓ·͢ɻͳͥͳΒɺE ⊖ B ⊂ N ΑΓ E ⊖ B ͸ µ-Մଌू߹Ͱ͋Γɺ
    E = (E − B) + (E ∩ B) = ((E ⊖ B) − B) + (B − (E ⊖ B)) ͱॻ͚ΔͷͰɺE ΋ µ-Մଌू߹ʹͳΔ͔ΒͰ͢ɻ
    ͜ͷޙ͸ɺ࣮ࡍʹ B Λ༻͍ͯɺ׬උͳଌ౓ۭؒʹ֦ுͰ͖Δ͜ͱΛࣔ͠·͢ɻ
    ิ୊ 2 (5) ͷ৚݅Ͱఆٛ͞ΕΔ B ʹ͍ͭͯɺ೚ҙͷ E ∈ B ʹରͯ͠ɺ(5) Λຬͨ͢ B1
    , B2
    ͱͯ͠
    B1
    ⊂ E ⊂ B2
    Λຬͨ͢΋ͷ͕औΕΔɻ
    ʢূ໌ʣ
    (5) Λຬͨ͢ B, N Λ༻͍ͯɺB1
    = B ∪ N, B2
    = B − N ͱ͢ΔͱɺB1
    ⊂ E ⊂ B2
    Ͱ͋ΓɺE ⊖ B1

    N, E ⊖ B2
    ⊂ N ͕੒Γཱͭɻ ˙
    ิ୊ 3 (5) ͷ৚݅Ͱఆٛ͞ΕΔ B ͸ σ-Ճ๏଒ʹͳΔɻ
    ʢূ໌ʣ
    B ͕ఆٛ 2 ͷ৚݅Λຬͨ͢͜ͱΛ֬ೝ͢Ε͹ྑ͍ɻ·ͣɺ
    ۭू߹ ϕ ʹ͍ͭͯ͸ɺ
    B = N = ϕ ͱͯ͠ɺ
    (5) ͕
    ੒Γཱͭɻ࣍ʹɺ
    E ∈ B ͱ͢Δ࣌ɺ
    (5) Λຬͨ͢ B, N Λ༻͍ͯɺ
    EC ⊖BC = E ⊖B ⊂ N ͱͳΔͷͰɺ
    EC ʹ
    ͍ͭͯ΋ (5) ͕੒Γཱͭɻ࠷ޙʹɺEn
    ∈ B (n = 1, 2, · · · ) ͱ͢Δ࣌ɺ࣍Λຬͨ͢ Bn
    , Nn
    ∈ B (n = 1, 2, · · · )
    ͕ଘࡏ͢Δɻ
    En
    ⊖ Bn
    ⊂ Nn
    , µ(Nn
    ) = 0
    ͜ͷ࣌ɺE =


    n=1
    En
    , B =


    n=1
    Bn
    , N =


    n=1
    Nn
    ͱ͓͘ͱɺB, N ∈ B Ͱ͋Γɺଌ౓ͷྼՃ๏ੑΛ༻͍ͯɺ
    ࣍ͷؔ܎͕੒Γཱͭɻ
    µ(N) ≤


    n=1
    µ(Nn
    ) = 0
    E ⊖ B ⊂


    n=1
    (En
    ⊖ Bn
    ) ⊂


    n=1
    Nn
    = N
    ͕ͨͬͯ͠ɺE ʹ͍ͭͯ΋ (5) ͕੒Γཱͭɻ ˙
    ఆཧ 8 E ∈ B ʹରͯ͠ɺ(5) Λຬͨ͢ B Λ༻͍ͯɺµ(E) = µ(B) Ͱू߹ؔ਺ µ Λఆٛ͢Δͱɺ(X, B, µ)
    ͸׬උͳଌ౓ۭؒʹͳΔɻ
    ʢূ໌ʣ
    ͸͡Ίʹɺू߹ؔ਺ µ ͕ well-defined Ͱ͋Δ͜ͱΛࣔ͢ɻ͜Εʹ͸ɺ(5) Λຬͨ͢ 2 छྨͷ૊ (B, N) ͱ
    (B′, N′) ʹ͍ͭͯɺµ(B) = µ(B′) Ͱ͋Δ͜ͱ͕ݴ͑Ε͹Α͍ɻࠓͷ৔߹ɺ
    B ⊖ B′ ⊂ (E ⊖ B) ∪ (E ⊖ B′) ⊂ N ∪ N′
    10

    View Slide

  11. ͱͳΔ͜ͱ͔Βɺµ(B ⊖ B′) = 0 ͕੒Γཱͭɻ͕ͨͬͯ͠ɺ
    B1
    = (B ⊖ B′) ∩ B ⊂ B ⊖ B′
    B2
    = (B ⊖ B′) ∩ B′ ⊂ B ⊖ B′
    ͱ͢Δ࣌ɺµ(B1
    ) = µ(B2
    ) = 0 Ͱ͋ΓɺB = (B ∩ B′) + B1
    ΑΓɺµ(B) = µ(B ∩ B′) ͕ಘΒΕΔɻಉ༷
    ʹɺB′ = (B ∩ B′) + B2
    ΑΓɺµ(B′) = µ(B ∩ B′) ͱͳΔͷͰɺµ(B) = µ(B′) ͕੒Γཱͭɻ
    ิ୊ 3 ΑΓɺ
    B ͸ σ-Ճ๏଒ͳͷͰɺ
    ޙ͸ɺ
    µ ͕ఆٛ 5 ͷ৚݅Λຬͨ͢͜ͱΛࣔͤ͹ྑ͍ɻ·ͣɺ
    µ(ϕ) = 0ɺ
    ͓
    Αͼɺ
    0 ≤ µ(E) ≤ ∞ ͸ࣗ໌Ͱ͋Δɻ࣍ʹɺ
    En
    ∈ B (n = 1, 2, · · · ), Ei
    ∩Ej
    = ϕ (i ̸= j) ͱͯ͠ɺ
    E =


    n=1
    En
    ͱ͢Δɻ͜ͷ࣌ɺิ୊ 2 ΑΓɺ֤ n ʹ͍ͭͯɺ
    Bn
    ⊂ En
    , En
    − Bn
    ⊂ Nn
    , µ(Nn
    ) = 0, Bi
    ∩ Bj
    = ϕ (i ̸= j)
    ͱͳΔ΋ͷ͕औΕΔɻ·ͨɺµ ͷఆٛΑΓɺµ(En
    ) = µ(Bn
    ) ͱͳΔɻ͜͜Ͱɺ
    B =


    n=1
    Bn
    , N =


    n=1
    Nn
    ͱஔ͘ͱɺ
    B ⊂ E, E − B ⊂


    n=1
    (En
    − Bn
    ) ⊂ N, µ(N) = 0
    ͕੒Γཱͭɻ͕ͨͬͯ͠ɺE, B, N ͸ (5) Λຬ͓ͨͯ͠Γɺµ(E) = µ(B) ͕੒Γཱͭɻͦͯ͠ɺµ ͸ B ্
    ͷଌ౓Ͱ͋Δ͔Βɺ


    i=1
    µ(En
    ) =


    n=1
    µ(Bn
    ) = µ(B) = µ(E)
    ͕੒Γཱͭɻ͕ͨͬͯ͠ɺµ ͸ B ্ͷଌ౓Ͱ͋Γɺ(X, B, µ) ͸ଌ౓ۭؒʹͳΔɻ͜Ε͕׬උͰ͋Δ͜ͱ͸ɺ
    ิ୊ 2 ͷ௚લͷຊจͷٞ࿦ʹΑΔɻ ˙
    ͜͜·Ͱͷٞ࿦͔Β෼͔ΔΑ͏ʹɺσ-ू߹଒ B ͱ͜ΕΛ׬උԽͨ͠ σ-ू߹଒ B ͕͋Δ࣌ɺ೚ҙͷ E ∈ B
    ʹରͯ͠ɺB1
    ⊂ E ⊂ B2
    , µ(B1
    − E) = µ(E − B2
    ) = 0 ͱͳΔ B1
    , B2
    ⊂ B ͕औΕ·͢ɻ͜Ε͸ɺେࡶ೺ʹ
    ͸ɺ
    ʮB ͱ B ͷࠩ͸ɺଌ౓ 0 Ͱ͋Δʯͱ͍͏͜ͱͰɺB Λ׬උԽ͢ΔͨΊͷ࠷௿ݶͷ֦ுͱཧղ͢Δࣄ͕Ͱ
    ͖·͢ɻ࣍ষͰ͸ɺϢʔΫϦουۭؒ RN ʹ͓͍ͯɺLebesgue ֎ଌ౓ µ∗ Λ༻͍ͯɺLebesgue Մଌू߹଒

    ͱ Lebesgue ଌ౓ µ Λఆٛ͠·͕͢ɺBorel ू߹଒ BN
    Λ׬උԽͨ͠΋ͷ͕ Lebesgue Մଌू߹଒ Mµ
    ʹҰக͢Δࣄ͕ࣔ͞Ε·͢ɻ
    11

    View Slide

  12. ਤ 2 ۠ؒͱ۠ؒմͷఆٛʢࢀߟॻ੶ [1] ΑΓҾ༻ʣ
    3 Lebesgue ଌ౓ͷఆٛ
    3.1 ۠ؒմͷ༗ݶՃ๏଒Λ༻͍ͨଌ౓ͷఆٛ
    ϢʔΫϦουۭؒ RN ʹ͓͍ͯ͸ɺ༗ݶݸͷۣܗΛ૊Έ߹Θͤͨਤܗ͸ɺ༗ݶՃ๏଒ͱͳΔ͜ͱ͕௚ײత
    ʹཧղͰ͖·͢ɻ͜͜Ͱݴ͏ۣܗ͸ɺ−∞ ≤ aν
    < bν
    ≤ ∞ (ν = 1, · · · , N) ʹରͯ͠ɺ
    I = (a1
    , b1
    ] × · · · × (aN
    , bN
    ] (6)
    Ͱఆٛ͞ΕΔ΋ͷͰɺ2 ࣍ݩͷ৔߹Ͱ͋Ε͹ɺਤ 2ʢࠨʣͷΑ͏ʹͳΓ·͢ɻ͜ͷΑ͏ͳۣܗΛ͜͜Ͱ͸ RN
    ʹ͓͚Δʮ۠ؒʯͱݺͼ·͢ɻͦͯ͠ɺਤ 2ʢӈʣͷΑ͏ʹͯ͠ɺ༗ݶݸͷ۠ؒΛޓ͍ʹॏͳΒͳ͍༷ʹฒ΂
    ͨ΋ͷΛʮ۠ؒմʯͱݺͼ·͢ɻ۠ؒմ E ͸ɺI1
    , · · · , In
    Λޓ͍ʹૉͳ۠ؒͱͯ͠ɺ͜ΕΒͷ࿨ू߹Ͱද͞
    Ε·͢ɻ
    E = I1
    + · · · + In
    ೋͭͷ۠ؒմ E1
    = I1
    + · · · + In
    ͱ E2
    = J1
    + · · · + Jm
    ͸ɺڞ௨ͷཁૉΛ࣋ͭ͜ͱ΋͋ΔͷͰɺҰൠʹ
    ͸ɺ࣍ͷؔ܎͸੒Γཱͪ·ͤΜɻ
    E1
    ∪ E2
    = (I1
    + · · · + In
    ) + (J1
    + · · · + Jm
    )
    ͔͠͠ͳ͕Βɺ۠ؒͷ૯਺͕༗ݶݸͰ͋Δ͜ͱ͔Βɺ৽ͨʹ۠ؒ K1
    , · · · , Kp
    ΛऔΓ௚ͯ͠ɺ
    E1
    ∪ E2
    = K1
    + · · · + Kp
    ͱද͢͜ͱ͕Ͱ͖·͢ɻ͕ͨͬͯ͠ɺ۠ؒմશମͷू߹Λ FN
    ͱ͢Δͱɺ͜Ε͸༗ݶՃ๏଒ʹͳΓ·͢ɻ
    ·ͨɺ(6) Ͱ༩͑ΒΕΔ۠ؒ I ͷ໘ੵ m(I) ͸ɺ
    m(I) =
    N

    ν=1
    (bν
    − aν
    )
    12

    View Slide

  13. Ͱࣗવʹఆٛ͞Ε·͢ɻಉ༷ʹͯ͠ɺ۠ؒմ E = I1
    + · · · + In
    ͷ໘ੵ m(E) ͸ɺ
    m(E) =
    n

    k=1
    m(Ik
    )
    ͰఆٛͰ͖·͢*2ɻ͜ͷ࣌ɺm(E) ͸ɺ༗ݶՃ๏଒ FN
    ্ͷ༗ݶՃ๏తଌ౓ʹͳΔ͜ͱ΋௚ײతʹཧղͰ͖
    ·͢ɻ
    ͞Βʹɺ࣍અͰ༷ࣔ͢ʹɺm(E) ͸ɺFN
    ্Ͱ׬શՃ๏తͰ΋͋Δ͜ͱ͕෼͔Γ·͢ɻ͕ͨͬͯ͠ɺલষͷ
    Ұൠ࿦Λద༻͢Δͱɺఆཧ 4 ʹΑΓɺRN ͷ೚ҙͷ෦෼ू߹ A ʹରͯ͠ɺ
    ʮߴʑՄࢉແݶݸͷ۠ؒմʢ΋͘͠
    ͸ɺͦΕΛߏ੒͢Δ۠ؒʣͰ A Λ෴ͬͨࡍͷ۠ؒմͷશ໘ੵͷԼݶʯͱͯ͠ɺA ͷ֎ଌ౓ µ∗(A) ͕ఆٛ͞Ε
    ͯɺ
    ʢm(E) ͕׬શՃ๏తͰ͋Δ͜ͱ͔Βʣ۠ؒմ E ʹରͯ͠͸ɺ
    µ∗(E) = m(E)
    ͕੒Γཱͪ·͢ɻ͜ͷΑ͏ʹఆٛ͞Εͨ µ∗ Λ Lebesgue ֎ଌ౓ͱ͍͍·͢ɻ͞ΒʹɺRN ͷதͰɺµ∗ ͷҙ
    ຯͰՄଌͳू߹શମΛ Mµ
    ͱͯ͠ɺµ∗ ͷఆٛҬΛ Mµ
    ʹݶఆͨ͠΋ͷ͕ Lebesgue ଌ౓ µ ʹͳΓ·͢ɻ
    ͪͳΈʹɺఆཧ 4 Ͱ֎ଌ౓Λߏ੒͢ΔࡍʹɺՃࢉແݶݸͷ۠ؒմͰ A Λ෴͏͜ͱΛڐͨ͠఺ʹɺLebesgue
    ଌ౓ͷͻͱͭͷϙΠϯτ͕͋Γ·͢ɻԾʹɺ༗ݶݸͷ۠ؒմʹݶఆͨ͠৔߹ɺՃࢉແݶݸͷ཭ࢄ఺Λ࣋ͭू߹
    ʹରͯ͠ɺଌ౓ 0 Λ༩͑Δ͜ͱ͕Ͱ͖ͳ͘ͳΓ·͢ɻ
    ͜͜·Ͱͷ੔ཧ͕Ͱ͖Ε͹ɺ͜ͷޙ͸ɺҰ୴ɺRN ʹݻ༗ͷ Lebesgue ଌ౓ͷఆٛ͸๨Εͯɺந৅తͳଌ౓
    ͷఆٛʹج͍ͮͯɺଌ౓ۭ͕ؒຬͨ͢ੑ࣭Λௐ΂Δࣄ͕Ͱ͖·͢ɻͦͯ͠·ͨಉ࣌ʹɺҰൠͷଌ౓ۭؒʹ͸ແ
    ͍ɺLebesgue ଌ౓ʹݻ༗ͷੑ࣭Λௐ΂Δ͜ͱ΋ॏཁʹͳΓ·͢ɻ
    3.2 m(E) ͕׬શՃ๏తͰ͋Δ͜ͱͷূ໌
    ఆཧ 9 RN ʹ͓͚Δ۠ؒմશମͷू߹Λ FN
    ͱͯ͠ɺ
    ʢࣗવʹఆٛ͞ΕΔʣ۠ؒմ E ͷ໘ੵ m(E) ͸׬શ
    Ճ๏తͰ͋ΓɺFN
    ্ͷ׬શՃ๏తଌ౓ µ ʹҰக͢Δɻ
    ʢূ໌ʣ
    ޓ͍ʹૉͳՃࢉແݶݸͷ۠ؒմ E1
    , E2
    , . . . ͕༩͑ΒΕͯɺE =


    n=1
    En
    ͕࠶ͼ۠ؒմʹͳΔɺ͢ͳΘͪɺ
    ༗ݶݸͷ۠ؒͷ࿨Ͱද͞ΕΔ৔߹ʹɺ
    m(E) =


    n=1
    m(En
    )
    ͕੒Γཱͭ͜ͱΛࣔͤ͹Α͍ɻ
    ·ͣɺ೚ҙͷ n ʹ͍ͭͯɺE ⊃
    n

    k=1
    Ek
    Ͱ͋Δ͔Βɺ໘ੵ m ͷ୯ௐੑͱ༗ݶՃ๏ੑʢఆཧ 1ʣʹΑΓɺ
    m(E) ≥ m
    (
    n

    k=1
    Ek
    )
    =
    n

    k=1
    m(Ek
    )
    ͕੒Γཱͪɺn → ∞ ͷۃݶΛऔΔͱɺ
    m(E) ≥


    n=1
    m(En
    )
    *2 ݫີʹ͸ɺ͜ͷ஋͸ɺ۠ؒʹΑΔ෼ղํ๏ʹґଘ͠ͳ͍͜ͱΛࣔ͢ඞཁ͕͋Γ·͢ɻ
    13

    View Slide

  14. ͕ಘΒΕΔɻ࣍ʹɺ͜ͷ൓ର޲͖ͷෆ౳ࣜΛॱΛ௥ͬͯࣔ͢ɻ
    ֤ En
    ͸ɺ༗ݶݸͷ۠ؒͷ࿨Ͱද͞ΕΔͷͰɺ͜ΕΒͷ۠ؒΛ͢΂ͯूΊͨ΋ͷΛվΊͯ I1
    , I2
    , · · · ͱ͢
    Δͱɺ
    E =


    n=1
    In
    (7)
    ͓Αͼ


    n=1
    m(In
    ) =


    n=1
    m(En
    )
    ͱ͍͏ؔ܎͕੒Γཱͭɻ·ͨɺE Λ༗ݶݸͷ۠ؒͰදͨ͠΋ͷΛ
    E =
    p

    k=1
    Kk
    ͱ͢Δɻ͜ͷ࣌ɺ೚ҙͷ ϵ0
    > 0 ʹରͯ͠ɺ༗քͳ۠ؒմ F Ͱɺ
    m(E) − ϵ0
    ≤ m(F) (8)
    ͔ͭɺF ⊂ E Λຬͨ͢΋ͷ͕औΕΔɻ۩ମతʹ͸ɺE Λߏ੒͢Δ֤۠ؒ Ki
    = (a1
    , b1
    ] × · · · × (aN
    , bN
    ] ʹର
    ͯ͠ɺͦΕͧΕͷ ν = 1, · · · , N ʹ͍ͭͯɺaν
    ʹ্͔Βऩଋ͢Δ਺ྻ {aνn
    }ɺ͓Αͼɺbν
    ʹԼ͔Βऩଋ͢Δ
    ਺ྻ {bνn
    } ΛऔΓɺ৽ͨͳ۠ؒ K′
    in
    = (a1n
    , b1n
    ] × · · · × (aNn
    , bNn
    ] Λ༻ҙ͢Δɻ͜ΕΒͷ۠ؒͷ࿨Λ Fn
    ͱ͢Ε͹ɺFn
    ⊂ E ͱͳΔɻҰํɺn → ∞ ͷۃݶͰ m(Fn
    ) → m(E) ͱͳΔͷͰɺn Λे෼େ͖͘͢Ε͹ɺ
    m(E) − ϵ0
    ≤ m(Fn
    ) Λຬͨ͢͜ͱ͕Ͱ͖Δɻ
    ࣍ʹɺ(7) ʹ͋Δ۠ؒ In
    Λ In
    = (an1
    , bn1
    ] × · · · × (anN
    , bnN
    ] ͱ͢Δ࣌ɺ೚ҙͷ ϵ1
    > 0 ʹରͯ͠ɺ۠ؒ
    In
    ΛΘ͔ͣʹ޿͛ͨ Jn
    = (an1
    , bn1
    + δn
    ] × · · · × (anN
    , bnN
    + δn
    ] Λ
    m(Jn
    ) ≤ m(In
    ) +
    ϵ1
    2n
    (9)
    Λຬ༷ͨ͢ʹऔΔɻ
    ʢ༩͑ΒΕͨ ϵ1
    ʹରͯ͠ɺे෼ʹখ͞ͳ δn
    > 0 ΛऔΔʣ
    ɻ͞ΒʹɺJn
    Λ։۠ؒʹͨ͠΋
    ͷΛ J′
    n
    = (an1
    , bn1
    + δn
    ) × · · · × (anN
    , bnN
    + δn
    ) ͱ͢Δͱɺ࣍ͷแؚؔ܎͕੒Γཱͭɻ
    F ⊂ E =


    n=1
    In



    n=1
    J′
    n
    ͜͜ͰɺF ͸༗քดू߹Ͱ͋ΓɺҰํɺJ′
    n
    ͸։ू߹ͳͷͰɺBorel-Lebesgue ͷඃ෴ఆཧʹΑΓɺ༗ݶݸͷ
    J′
    n
    Ͱ F Λ෴͏͜ͱ͕Ͱ͖ɺ࣍ͷแؚؔ܎͕੒Γཱͭɻ
    F ⊂ F ⊂
    n0

    n=1
    J′
    n

    n0

    n=1
    Jn
    ͜ͷؔ܎ʹଌ౓ m Λద༻͢Δͱɺm ͷ୯ௐੑͱ༗ݶՃ๏ੑɺ͓Αͼɺ(8)(9) ͷؔ܎Λ߹Θͤͯɺ࣍ͷ݁Ռ
    ͕੒Γཱͭɻ
    m(E) − ϵ0
    ≤ m(F) ≤
    n0

    n=1
    m(Jn
    ) ≤
    n0

    n=1
    {
    m(In
    ) +
    ϵ1
    2n
    }



    n=1
    m(In
    ) + ϵ1
    ϵ0
    ͱ ϵ1
    ͸೚ҙͳͷͰɺϵ0
    , ϵ1
    → 0 ͷۃݶΛͱͬͯɺ
    m(E) ≤


    n=1
    m(In
    ) =


    n=1
    m(En
    )
    14

    View Slide

  15. ͕ಘΒΕΔɻҎ্ʹΑΓɺm(E) =


    n=1
    m(En
    ) ͕ࣔ͞Εͨɻ
    ͕ͨͬͯ͠ɺF ⊂ Mµ
    Ͱ͋Ε͹ɺ۠ؒմͷ໘ੵ m(E) ͸ଌ౓ µ ʹҰக͢Δ͜ͱ͕ݴ͑Δɻ͜ͷ఺ʹ͍ͭͯ
    ͸ɺ͜ͷޙͷఆཧ 21 ͷূ໌Λࢀরɻ ˙
    3.3 Մଌू߹଒ Mµ
    ͷൣғ
    ʮ2.3 ֎ଌ౓Λܦ༝ͨ͠ଌ౓ͷߏ੒ํ๏ʯͰ͸ɺΓ-Մଌू߹ΛఱԼΓతʹఆٛ͠·͕ͨ͠ʢఆٛ 7ʣ
    ɺRN ͷ
    ৔߹ɺ͢ͳΘͪɺ֎ଌ౓ Γ ͱͯ͠ Lebesugue ֎ଌ౓ µ∗ Λ༻͍ͨ৔߹ʹɺରԠ͢ΔՄଌू߹଒ Mµ
    ͕ͲͷΑ
    ͏ͳू߹ʹͳΔͷ͔͕ෆ໌֬Ͱ͢ɻ͜͜Ͱ͸ɺBorel ू߹଒ͷ֓೦Λ༻͍ͯɺMµ
    ͷʮൣғʯΛߜΓࠐΜͰΈ
    ·͢ɻ
    ͸͡ΊʹɺRN ʹݶఆ͠ͳ͍Ұൠ࿦ͱͯ͠ɺ
    ʮ࠷খͷ σ-Ճ๏଒ʯͱ͍͏֓೦Λಋೖ͠·͢ɻ
    ఆཧ 10 ۭؒ X ͷ෦෼ू߹͔ΒͳΔ೚ҙͷू߹଒ V0
    ʹରͯ͠ɺ͜ΕΛؚΉ࠷খͷ σ-Ճ๏଒ B[V0
    ] ͕ଘ
    ࡏ͢Δɻ͢ͳΘͪɺB[V0
    ] ͸ɺB[V0
    ] ⊃ V0
    Λຬͨ͢ σ-Ճ๏଒Ͱ͋ΓɺB ⊃ V0
    Λຬͨ͢೚ҙͷ σ-Ճ๏଒
    B ʹରͯ͠ɺB[V0
    ] ⊂ B ͕੒Γཱͭɻ
    ʢূ໌ʣ
    V0
    ΛؚΉ σ-Ճ๏଒͸ɺগͳ͘ͱ΋ 1 ͭ͸ଘࡏ͢Δɻͨͱ͑͹ɺX ͷ͢΂ͯͷ෦෼ू߹͔ΒͳΔू߹଒Λ
    ߟ͑Ε͹Α͍ɻͦ͜ͰɺV0
    ΛؚΉ σ-Ճ๏଒શମͷੵू߹Λ B[V0
    ] ͱ͢Ε͹Α͍ɻ ˙
    ͦ͜ͰɺRN ʹ͓͍ͯɺ։ू߹શମ͔ΒͳΔू߹଒ ON
    Λߟ͑ͯɺ͜ΕΛؚΉ࠷খͷ σ-Ճ๏଒ B[ON
    ] Λ
    RN ʹ͓͚Δ Borel ू߹଒ BN
    ͱ͍͍·͢ɻ͜Ε͸ɺRN ʹ͓͚Δ۠ؒશମ IN
    ɺ΋͘͠͸ɺ۠ؒմશମ
    FN
    ΛؚΉ࠷খͷ σ-Ճ๏଒ʹҰக͠·͢ɻ
    ఆཧ 11 BN
    = B[IN
    ] = B[FN
    ]
    ʢূ໌ʣ
    ͸͡Ίʹ B[IN
    ] = B[FN
    ] Λࣔ͢ɻ·ͣɺIN
    ⊂ FN
    ⊂ B[FN
    ] Ͱ͋ΓɺB[IN
    ] ͸ IN
    ΛؚΉ࠷খͷ σ-Ճ๏
    ଒Ͱ͋Δ͜ͱ͔ΒɺB[IN
    ] ⊂ B[FN
    ] ͕੒Γཱͭɻ
    ࣍ʹɺ೚ҙͷ E ∈ FN
    ͸༗ݶݸͷ۠ؒͷ࿨Ͱද͞ΕΔͷͰɺE ∈ B[IN
    ] Ͱ͋ΓɺैͬͯɺFN
    ⊂ B[IN

    B[FN
    ] ͸ FN
    ΛؚΉ࠷খͷ σ-Ճ๏଒Ͱ͋Δ͜ͱ͔ΒɺB[FN
    ] ⊂ B[IN
    ] ͕੒ΓཱͭɻҎ্ʹΑΓɺB[IN
    ] =
    B[FN
    ] ͕੒Γཱͭɻ
    ଓ͍ͯɺB[IN
    ] = BN
    Λࣔ͢ɻIN
    ͷ೚ҙͷݩΛ I = (a1
    , b1
    ] × · · · × (aN
    , bN
    ] ͱ͢ΔͱɺJn
    = (a1
    , b1
    +
    1
    n
    ) × · · · × (aN
    , bN
    +
    1
    n
    ) (n = 1, 2, · · · ) ͱͯ͠ɺ
    I =


    n=1
    Jn
    ͱॻ͚ΔɻJn
    ͸։ू߹ͳͷɺ͜Ε͸ɺI ∈ BN
    Λҙຯ͢ΔɻैͬͯɺIN
    ⊂ BN
    Ͱ͋ΓɺB[IN
    ] ͸ IN
    Λؚ
    Ή࠷খͷ σ-Ճ๏଒Ͱ͋Δ͜ͱ͔ΒɺB[IN
    ] ⊂ BN
    ͕੒Γཱͭɻ
    ࣍ʹɺRN ͷ೚ҙͷ։ू߹ G ∈ ON
    ʹରͯ͠ɺ֤఺ x ∈ G ʹ͍ͭͯɺIx
    ⊂ G ͱͳΔ۠ؒ Ix
    ͕औΕΔɻ
    15

    View Slide

  16. ۠ؒ Ix
    = (a1
    , b1
    ] × · · · × (aN
    , bN
    ] ʹରͯ͠ɺ։ू߹ Jx
    = (a1
    , b1
    ) × · · · × (aN
    , bN
    ) ΛऔΔͱɺ

    x∈G
    Jx
    ⊃ G
    ͱͳΔͷͰɺLindel¨
    of ͷඃ෴ఆཧʹΑΓɺՃࢉແݶݸͷ Jx
    Λ༻͍ͯɺ


    n=1
    Jxn
    ⊃ G
    ͱͰ͖Δɻͭ·Γɺ


    n=1
    Ixn



    n=1
    Jxn
    ⊃ G
    ͕੒ΓཱͭɻҰํɺIx
    ⊂ G Ͱ͋ͬͨ͜ͱ͔Βɺ͜Ε͸ɺ
    G =


    n=1
    Ixn
    ∈ B[In
    ]
    Λҙຯ͢Δɻͭ·ΓɺON
    ⊂ B[In
    ] ͱͳΔɻB = B[ON
    ] ͸ɺON
    ΛؚΉ࠷খͷ σ-Ճ๏଒Ͱ͋Δ͔Βɺ͜Ε
    ΑΓɺB ⊂ B[IN
    ] ͕ಘΒΕΔɻҎ্ʹΑΓɺB = B[IN
    ] ͕੒Γཱͭɻ ˙
    ͜͜Ͱ͸ɺ։ू߹શମΛؚΉ࠷খͷ σ-Ճ๏଒ͱͯ͠ Borel ू߹଒ BN
    Λఆٛ͠·͕ͨ͠ɺRN Ͱ͸ɺՃࢉ
    ແݶݸͷ։ू߹Λ༻͍ͯดू߹Λද͢͜ͱ͕Ͱ͖ΔͷͰɺดू߹΋·ͨ BN
    ʹଐ͠·͢ɻͭ·ΓɺߴʑՃࢉ
    ແݶݸͷ։ू߹ͱดू߹Λ༻͍ͯʢ͜ΕΒͷ࿨ू߹ɺੵू߹ɺิू߹ͳͲͷԋࢉʹΑΓʣಘΒΕΔू߹͸ɺ͢
    ΂ͯ Borel ू߹଒ BN
    ʹଐ͢Δ͜ͱʹͳΓ·͢ɻ
    ͜ͷ Borel ू߹଒ BN
    ͸ɺ΍΍௚ײతͳݴ͍ํΛ͢Δͱɺ࣍ͷੑ࣭Λຬͨ͠·͢ɻ
    • Մଌू߹଒ Mµ
    ʹؚ·Ε͓ͯΓɺͦͷࠩ Mµ
    − BN
    ͸ʮ΄ͱΜͲθϩʯͰ͋Δʢఆཧ 16ɺఆཧ 18ʣ
    • ೚ҙͷू߹ A ⊂ RN Λ Borel ू߹ B ∈ BN
    Ͱ֎͔ΒۙࣅͰ͖Δʢఆཧ 14ʣ
    ͭ·ΓɺՄଌू߹ͷେ෦෼͸Մࢉແݶݸͷ։ू߹ͷ૊Έ߹ΘͤͰ࡞Δ͜ͱ͕Ͱ͖ͯɺ͜Ε͸ʢՄଌू߹ͱ͸
    ݶΒͳ͍ʣ೚ҙͷू߹Λۙࣅతʹද͢ͷʹे෼Ͱ͋Δɺͱ͍͏͜ͱʹͳΓ·͢ɻ͜ͷޙ͸ɺ্هͷؔ܎Λ਺ֶ
    తʹݫີͳܗͰఆཧͱ͍͖ͯࣔͯ͠͠·͢ɻ
    ͸͡ΊʹɺBN
    ͸ɺMµ
    ʹؚ·ΕΔ͜ͱΛࣔ͠·͢ɻ͜Εʹ͸ɺRN ʹݶఆ͠ͳ͍ɺ࣍ͷҰൠతͳؔ܎Λ༻
    ͍·͢ɻ
    ิ୊ 4 ۭؒ X ͷ෦෼ू߹͔ΒͳΔ༗ݶՃ๏଒ F Λ༻͍ͯɺ֎ଌ౓ Γɺ͓ΑͼɺՄଌू߹଒ MΓ
    Λߏ੒͠
    ͨ৔߹ɺF ⊂ MΓ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ೚ҙͷ E ∈ F ʹରͯ͠ɺE ͕ Γ-ՄଌͰ͋Δ͜ͱΛࣔͤ͹Α͍ɻ·ͣɺ೚ҙͷ A ⊂ X ʹରͯ͠ɺF
    ͷݩʹΑΔඃ෴Λ A ⊂


    n=1
    En
    ͱ͢Δͱɺ


    n=1
    m(En
    ) =


    n=1
    m(En
    ∩ E) +


    n=1
    m(En
    ∩ EC)
    ≥ Γ(A ∩ E) + Γ(A ∩ EC)
    16

    View Slide

  17. ͕੒Γཱͭɻ্ࣜͷෆ౳߸͸ɺA ∩ E ⊂


    n=1
    (En
    ∩ E)ɺ͓ΑͼɺA ∩ EC ⊂


    n=1
    (En
    ∩ EC) ΑΓɺΓ(A ∩ E) ≤


    n=1
    m(En
    ∩ E)ɺ͓ΑͼɺΓ(A ∩ EC) ≤


    n=1
    m(En
    ∩ EC) ͱͳΔ͜ͱΛ༻͍ͨɻ͕ͨͬͯ͠ɺA ͷ͢΂ͯͷ
    ෴͍ํʹؔ͢ΔԼݶΛͱͬͯɺ
    Γ(A) ≥ Γ(A ∩ E) + Γ(A ∩ EC)
    ͕ಘΒΕΔɻ
    Ұํɺ֎ଌ౓ Γ ͷྼՃ๏ੑΑΓɺ
    Γ(A) = Γ(A ∩ E + A ∩ EC) ≤ Γ(A ∩ E) + Γ(A ∩ EC)
    ͱͳΔͷͰɺҎ্ΑΓɺΓ(A) = Γ(A ∩ E) + Γ(A ∩ EC) ͕੒Γཱͭɻ͜Ε͸ɺE ͕ Γ-ՄଌͰ͋Δ͜ͱΛࣔ͠
    ͍ͯΔɻ ˙
    ͜ͷิ୊ʹΑΓɺRN ʹ͓͍ͯɺ࣍ͷؔ܎͕੒Γཱͪ·͢ɻ
    ఆཧ 12 BN
    ⊂ Mµ
    ʢূ໌ʣ
    ิ୊ 4 ΑΓɺFN
    ⊂ Mµ
    ͱͳΓɺB[FN
    ] ͸ɺFN
    ΛؚΉ࠷খͷ σ-Ճ๏଒Ͱ͋Δ͜ͱ͔ΒɺB[FN
    ] ⊂ Mµ
    ͕
    ੒Γཱͭɻ͞Βʹɺఆཧ 11 ΑΓɺBN
    = B[FN
    ] ͳͷͰɺBN
    ⊂ Mµ
    ͕ಘΒΕΔɻ ˙
    ͜ΕʹΑΓɺ
    ͢΂ͯͷ։ू߹ G ͸Մଌू߹Ͱ͋Γɺ
    ଌ౓ µ(G) ͕ܾ·Γ·͢ɻ͜ͷ࣌ɺ
    ೚ҙͷू߹ A ⊂ RN
    ʹରͯ͠ɺͦͷ֎ଌ౓ µ∗(A) ʹे෼ʹ͍ۙଌ౓ µ(G) Λ࣋ͭ։ू߹ G ⊃ A ͕ଘࡏ͠·͢ɻ
    ఆཧ 13 ೚ҙͷ A ⊂ RN ʹରͯ͠ɺ͕࣍੒Γཱͭɻ
    µ∗(A) = inf {µ(G) | G ∈ ON
    , G ⊃ A}
    ʢূ໌ʣ
    ֎ଌ౓ µ∗(A) ͷఆٛΑΓɺ೚ҙͷ ϵ > 0 ʹରͯ͠ɺߴʑՃࢉແݶݸͷ۠ؒմ E1
    , E2
    , · · · ∈ FN
    ͕͋Γɺ࣍
    ͕੒Γཱͭɻ
    A ⊂


    n=1
    En
    µ∗(A) + ϵ ≥


    n=1
    m(En
    )
    ͦΕͧΕͷ En
    (n = 1, 2, · · · ) Λߏ੒͢Δ۠ؒΛ͢΂ͯ·ͱΊͯ I1
    , I2
    , · · · ͱ͢Δͱɺ͜Ε͸࣍ͷ༷ʹॻ͖
    ௚ͤΔɻ
    A ⊂


    n=1
    In
    µ∗(A) + ϵ ≥


    n=1
    m(In
    ) =


    n=1
    µ(In
    ) (10)
    17

    View Slide

  18. ࠷ޙͷ౳߸͸ɺ۠ؒʢΑΓҰൠʹ͸۠ؒմʣʹ͍ͭͯ͸ɺµ∗(I) = m(I) Ͱ͋Γɺ͞Βʹิ୊ 4 ΑΓɺ
    IN
    ⊂ FN
    ⊂ MN
    ͳͷͰɺµ∗(I) = µ(I) ͱͳΔ͜ͱΛ༻͍ͨɻ
    ࣍ʹɺͦΕͧΕͷ In
    = (an1
    , bn1
    ] × · · · × (anN
    , bnN
    ] ʹରͯ͠ɺ։ू߹ Gn
    = (an1
    , bn1
    + δn
    ) × · · · ×
    (anN
    , bnN
    + δn
    ) Λఆٛͯ͠ɺδn
    Λे෼ʹখ͘͞औΔͱɺ
    µ(Gn
    ) ≤ µ(In
    ) +
    ϵ
    2n
    (11)
    ͱ͢Δ͜ͱ͕Ͱ͖Δɻ͜ͷ࣌ɺG =


    n=1
    Gn
    ͱ͢Δͱɺ
    G ⊃


    n=1
    In
    ⊃ A
    Ͱ͋Γɺ͞Βʹɺ࣍ͷؔ܎͕੒Γཱͭɻ
    inf {µ(G)} ≤ µ(G) ≤


    n=1
    µ(Gn
    ) ≤


    n=1
    {
    µ(In
    ) +
    ϵ
    2n
    }
    ≤ µ∗(A) + 2ϵ
    ͜͜Ͱɺ࠷ޙͷෆ౳߸͸ (10)(11) Λ༻͍ͨɻ ϵ > 0 ͸೚ҙͰ͋Δ͜ͱ͔Βɺϵ → 0 ͷۃݶʹΑΓɺ
    inf {µ(G)} ≤ µ∗(A) ͕ಘΒΕΔɻ
    ҰํɺG ⊃ A ͷൣғͰͷԼݶΛߟ͍͑ͯΔͷͰɺinf {µ(G)} ≥ µ∗(A) ͱͳΓɺ͜ΕΒΛ߹Θͤͯɺ
    inf {µ(G)} = µ∗(A) ͕ಘΒΕΔɻ ˙
    ͜ͷఆཧΛ༻͍Δͱɺ೚ҙͷू߹ A ⊂ RN ʹରͯ͠ɺµ(B) = µ∗(A) ͱͳΔ Borel ू߹ B ⊃ A Λߏ੒͢
    Δ͜ͱ͕Ͱ͖·͢ɻ
    ఆཧ 14 ೚ҙͷ A ⊂ RN ʹରͯ͠ɺB ⊃ A, µ(B) = µ∗(A) Λຬͨ͢ Borel ू߹ B ∈ BN
    ͕ଘࡏ͢Δɻ
    ʢূ໌ʣ
    ఆཧ 13 ΑΓɺ೚ҙͷ n = 1, 2, · · · ʹରͯ͠ɺGn
    ⊃ A, µ(Gn
    ) ≤ µ∗(A) +
    1
    n
    ͱͳΔ։ू߹ Gn
    ͕ଘࡏ͢
    Δɻͦ͜ͰɺB =


    n=1
    Gn
    ͱ͢Δͱɺ͜Ε͸ Borel ू߹Ͱ͋ΓɺA ⊂ B ⊂ Gn
    ͱͳΔɻैͬͯɺ
    µ∗(A) ≤ µ(B) ≤ µ(Gn
    ) ≤ µ∗(A) +
    1
    n
    ͕੒Γཱͭɻn ͸೚ҙʹେ͖͘ͱΕΔ͜ͱ͔Βɺn → ∞ ͷۃݶΑΓɺµ(B) = µ∗(A) ͕ಘΒΕΔɻ ˙
    ͜Ε͕ɺઌ΄Ͳड़΂ͨʮ೚ҙͷू߹ A ⊂ RN Λ Borel ू߹ B ⊂ BN
    Ͱ֎͔ΒۙࣅͰ͖Δʯͱ͍͏ࣄͷҙ
    ຯʹͳΓ·͢ɻ
    ଓ͍ͯɺBorel ू߹଒ B ͱՄଌू߹଒ Mµ
    ͷؔ܎Λௐ΂·͢ɻ͸͡Ίʹɺ೚ҙͷՄଌू߹ A ∈ Mµ
    ʹର
    ͯ͠ɺଌ౓ µ(G) ͕ଌ౓ µ(A) ʹ͍͘ΒͰ΋ۙ͘ͳΔΑ͏ʹ։ू߹ G Λબ΂Δ͜ͱΛࣔ͠·͢ɻ࣍ͷఆཧ͸ɺ
    µ(A) = ∞ ͷ৔߹Ͱ΋੒Γཱͭ఺ʹ஫ҙ͍ͯͩ͘͠͞ɻ
    ఆཧ 15 ೚ҙͷ A ∈ Mµ
    ͕༩͑ΒΕͨ࣌ɺ೚ҙͷ ϵ > 0 ʹରͯ͠ɺµ(G − A) < ϵ ͱͳΔ։ू߹ G ⊃ A ͕
    ଘࡏ͢Δɻ
    18

    View Slide

  19. ʢূ໌ʣ
    µ(A) < ∞ ͷ৔߹͸ɺఆཧ 13 ΑΓɺµ(A) + ϵ < µ(G) Λຬͨ͢։ू߹ G ⊃ A ͕ଘࡏ͢ΔͷͰɺ͜ΕΛ༻
    ͍ͯɺµ(G − A) = µ(G) − µ(A) < ϵ ͱͳΔɻ
    µ(A) = ∞ ͷ৔߹͸ɺSn
    ⊂ R Λݪ఺த৺ɺ൒ܘ n ͷٿମ಺෦͔ΒͳΔ։ू߹ͱͯ͠ɺ
    A =


    n=1
    An
    , An
    = A ∩ Sn
    ͱ͢Δɻ͜ͷ࣌ɺͦΕͧΕͷ An
    ʹରͯ͠ɺµ(A) < ∞ ͷ৔߹ͷ݁ՌΛద༻͢Δͱɺµ(Gn
    − An
    ) <
    ϵ
    2n
    Λຬ
    ͨ͢։ू߹ Gn
    ⊃ An
    ͕औΕΔɻͦ͜ͰɺG =


    n=1
    Gn
    ͱஔ͘ͱɺ
    G ⊃ A, G − A =


    n=1
    (Gn
    − An
    )
    ͕੒Γཱͪɺ͜ΕΒΑΓɺ
    µ(G − A) ≤


    n=1
    µ(Gn
    − An
    ) < ϵ
    ͕੒Γཱͭɻ ˙
    ͜ͷ݁ՌΛར༻͢Δͱɺ೚ҙͷՄଌू߹ A ∈ Mµ
    ʹରͯ͠ɺµ(B) = µ(A)ʢµ(A) = ∞ ͷ৔߹ΛؚΊΔͳ
    Β͹ɺµ(B − A) = 0ʣͱͳΔ Borel ू߹ B ⊃ A ΛऔΕΔ͜ͱ͕ࣔ͞Ε·͢ɻ
    ఆཧ 16 ೚ҙͷՄଌू߹ A ∈ Mµ
    ʹରͯ͠ɺµ(B − A) = 0 ͱͳΔ Borel ू߹ B ⊃ A ͕ଘࡏ͢Δɻ
    ʢূ໌ʣ
    ೚ҙͷ n = 1, 2, · · · ʹରͯ͠ɺఆཧ 15 ΑΓɺµ(Gn
    − A) <
    1
    n
    Λຬͨ͢։ू߹ Gn
    ⊃ A ͕औΕΔɻͦ͜
    ͰɺB =


    n=1
    Gn
    ͱ͢ΔͱɺB ͸ɺB ⊃ A Λຬͨ͢ Borel ू߹Ͱ͋ΓɺB − A ⊂ Gn
    − A Ͱ͋Δ͜ͱ͔Βɺ
    µ(B − A) ≤ µ(Gn
    − A) <
    1
    n
    ͕੒Γཱͭɻn ͸೚ҙʹେ͖͘औΕΔͷͰɺn → ∞ ͷۃݶΛऔΔͱɺµ(B − A) = 0 ͕ಘΒΕΔɻ ˙
    ্هͷఆཧ͸ɺ೚ҙͷՄଌू߹ A Λ Borel ू߹ B Ͱʮ֎͔ΒۙࣅʯͰ͖Δ͜ͱΛද͠·͕͢ɺಉ༷ʹͯ͠ɺ
    ʮ಺ଆ͔Βۙࣅʯ͢Δ͜ͱ΋ՄೳͰ͢ɻ͜ΕΛࣔ͢ʹ͸ɺఆཧ 15 ʹରԠ͢Δ΋ͷͱͯ͠ɺ࣍ͷఆཧ͕ඞཁʹͳ
    Γ·͢ɻ
    ఆཧ 17 ೚ҙͷ A ∈ Mµ
    ͕༩͑ΒΕͨ࣌ɺ೚ҙͷ ϵ > 0 ʹରͯ͠ɺµ(A − F) < ϵ ͱͳΔดू߹ F ⊂ A ͕
    ଘࡏ͢Δɻ
    ʢূ໌ʣ
    Sn
    ⊂ R Λݪ఺த৺ɺ൒ܘ n ͷٿମ಺෦͔ΒͳΔ։ू߹ͱ͢Δɻ͸͡ΊʹɺA ͕༗քͰ Sn
    ⊃ A ͱͳΔ
    n ͕ଘࡏ͢Δ৔߹Λߟ͑Δɻ͜ͷ࣌ɺSn
    ͷดแ Sn
    ͸ɺՃࢉແݶݸͷ։ू߹ͷੵू߹ͰදݱͰ͖ΔͷͰɺ
    19

    View Slide

  20. ਤ 3 G − (Sn
    − A) ͱ A − F ͷؔ܎
    Sn
    ∈ BN
    ⊂ Mµ
    Ͱ͋ΓɺSn
    − A ͸Մଌू߹ʹͳΔɻैͬͯɺఆཧ 15 ΑΓɺµ(G − (Sn
    − A)) < ϵ Λຬͨ͢
    ։ू߹ G ⊃ Sn
    − A ͕ଘࡏ͢Δɻ
    ͜ͷ࣌ɺF = Sn
    − G ͱஔ͘ͱɺ͜Ε͸ดू߹Ͱ͋Γɺਤ 3 ΑΓɺF ⊂ Aɺ͔ͭɺA − F ⊂ G − (Sn
    − A)
    ͕੒Γཱͭɻैͬͯɺµ(A − F) ≤ µ(G − (Sn
    − A)) < ϵ ͕੒Γཱͭɻ
    A ͕༗քͰͳ͍৔߹͸ɺ
    A1
    = A ∩ S1
    , An
    = A ∩ (Sn
    − Sn−1
    ) (n = 2, 3, · · · )
    ͱ͢Δͱɺ
    A =


    n=1
    An
    Ͱ͋Γɺ
    An
    ͸༗քͳͷͰɺ
    ઌ΄Ͳͷ݁ՌΑΓɺ
    ͦΕͧΕͷ An
    ʹରͯ͠ɺ
    µ(An
    −Fn
    ) <
    ϵ
    2n
    Λຬͨ͢ดू߹ Fn
    ⊂ An
    ͕औΕΔɻ·ͨɺA1
    , A2
    , · · · ͸ޓ͍ʹૉͳͷͰɺF1
    , F2
    , · · · ΋ޓ͍ʹૉͳด
    ू߹ͱͳΓɺF =


    n=1
    Fn
    ͸ɺF ⊂ A Λຬͨ͢ดू߹ʹͳΔɻ͞Βʹ͜ͷ࣌ɺA − F =


    n=1
    (An
    − Fn
    ) ͱͳΔ
    ࣄ͔Βɺµ(A − F) ≤


    n=1
    µ(An
    − Fn
    ) < ϵ ͕੒Γཱͭɻ ˙
    ͜ͷ݁ՌΛར༻ͯ͠ɺ೚ҙͷՄଌू߹ A ∈ Mµ
    ʹରͯ͠ɺµ(B) = µ(A)ʢµ(A) = ∞ ͷ৔߹ΛؚΊΔͳΒ
    ͹ɺµ(A − B) = 0ʣͱͳΔ Borel ू߹ B ⊂ A ΛऔΕΔ͜ͱΛࣔ͠·͢ɻ
    ఆཧ 18 ೚ҙͷՄଌू߹ A ∈ Mµ
    ʹରͯ͠ɺµ(A − B) = 0 ͱͳΔ Borel ू߹ B ⊂ A ͕ଘࡏ͢Δɻ
    ʢূ໌ʣ
    ೚ҙͷ n = 1, 2, · · · ʹରͯ͠ɺఆཧ 17 ΑΓɺµ(A − Fn
    ) ≤
    1
    n
    Λຬͨ͢ดू߹ Fn
    ͕औΕΔɻͦ͜Ͱɺ
    B =


    n=1
    Fn
    ͱ͢ΔͱɺB ͸ɺB ⊂ A Λຬͨ͢ Borel ू߹Ͱ͋ΓɺA − B ⊂ A − Fn
    Ͱ͋Δ͜ͱ͔Βɺ
    µ(A − B) ≤ µ(A − Fn
    ) <
    1
    n
    ͕੒Γཱͭɻn ͸೚ҙͷେ͖͘औΕΔͷͰɺn → ∞ ͷۃݶΛऔΔͱɺµ(A − B) = 0 ͕ಘΒΕΔɻ ˙
    20

    View Slide

  21. ఆཧ 16 ͱఆཧ 18 ͕ɺՄଌू߹଒ Mµ
    ͱ Borel ू߹଒ BN
    ͷࠩ͸ʮ΄ͱΜͲθϩʯͰ͋Δͱ͍͏ࣄͷ࣮࣭
    తͳҙຯʹͳΓ·͢ɻ͜ΕΒͷࣄ࣮Λར༻͢ΔͱɺBorel ू߹଒ BN
    Λ׬උԽͨ͠΋ͷ͕Մଌू߹଒ Mµ
    ʹ
    Ұக͢Δࣄ͕ࣔ͞Ε·͢ɻ
    ఆཧ 19 ଌ౓ۭؒ (RN , BN
    , µ) Λఆཧ 8 ͷํ๏Ͱ׬උԽͨ͠ଌ౓ۭؒ (RN , BN
    , µ) ͸ɺଌ౓ۭؒ
    (RN , Mµ
    , µ) ʹҰக͢Δɻ
    ʢূ໌ʣ
    ͸͡ΊʹɺBN
    ⊂ Mµ
    Λࣔ͢ɻA ∈ BN
    ͱ͢ΔͱɺA ⊖ B ⊂ N, µ(N) = 0 ͱͳΔ B, N ∈ BN
    ⊂ Mµ
    ͕
    औΕΔɻ͜ͷ࣌ɺଌ౓ۭؒ (RN , Mµ
    , µ) ͸׬උͰ͋Δ͜ͱ͔Βɺ
    N ⊃ A − B ∈ Mµ
    , N ⊃ B − A ∈ Mµ
    ͕੒Γཱͭɻ͕ͨͬͯ͠ɺ
    A = (A − B) ∪ (A ∩ B) = (A − B) ∪ (B − (B − A))
    ͱॻ͚Δ͜ͱ͔ΒɺA ∈ Mµ
    ͱͳΔɻ·ͨɺN ⊃ A ⊖ B ΑΓɺMµ
    ্ͷଌ౓ͱͯ͠ɺµ(B) = µ(A) ͕੒Γ
    ཱͭͷͰɺµ(A) = µ(B) = µ(A) ͱͳΓɺBN
    ্ͷଌ౓ µ ͸ɺMµ
    ্ͷଌ౓ µ ʹҰக͢Δɻ
    ࣍ʹɺMµ
    ⊂ BN
    Λࣔ͢ɻ೚ҙͷ A ∈ Mµ
    ʹ͍ͭͯɺఆཧ 16 ΑΓɺA ⊂ B, µ(B − A) = 0 Λຬͨ͢
    B ∈ BN
    ͕औΕΔɻ͕ͨͬͯ͠ɺN = B ͱͯ͠ɺA ͸ (5) ͷ৚݅Λຬͨ͢ɻΑͬͯɺA ∈ BN
    ͱͳΔɻ ˙
    4 ֦ுఆཧͱ௚ੵଌ౓
    ͜͜Ͱ͸ɺ࠶ͼɺRN ʹݶఆ͠ͳ͍ҰൠͷۭؒͰ੒Γཱͭؔ܎Λٞ࿦͠·͢ɻ͜Ε·Ͱʹɺ༗ݶՃ๏଒ F ্
    ͷ༗ݶՃ๏తଌ౓ m ͔Β֎ଌ౓ Γ Λܦ༝ͯ͠ɺଌ౓ µ Λߏ੒Ͱ͖Δ͜ͱΛࣔ͠·ͨ͠ɻ͜ͷࡍɺఆཧ 4 Ͱ
    ݟͨΑ͏ʹɺm ͕׬શՃ๏తͰ͋Ε͹ɺF ্Ͱ m ͱ Γ ͸Ұக͢ΔͷͰɺΓ ͸ m ͷࣗવͳ֦ுͱΈͳ͢͜ͱ
    ͕Ͱ͖·͢ɻ͞Βʹɺ֎ଌ౓ Γ ͔Β σ-Ճ๏଒ MΓ
    ্ͷଌ౓ µ Λߏ੒ͨ͠ࡍʹɺF ⊂ MΓ
    ͕੒Γཱͯ͹ɺଌ
    ౓ µ ΋·ͨɺm ͷࣗવͳ֦ுʹͳΓ·͕͢ɺ͜Ε͸ඞͣ੒Γཱͪ·͢ɻ
    ఆཧ 20 ʮ2.3 ֎ଌ౓Λܦ༝ͨ͠ଌ౓ͷߏ੒ํ๏ʯͷखଓ͖ʹΑͬͯɺ༗ݶՃ๏଒ F ͔Βߏ੒ͨ͠ σ-Ճ๏଒

    ʹ͍ͭͯɺF ⊂ MΓ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    ೚ҙͷ E ∈ F ͕ఆٛ 7 ͷ৚݅Λຬͨ͢͜ͱΛࣔͤ͹Α͍ɻ೚ҙͷ A ⊂ X ʹରͯ͠ɺඃ෴ A ⊂


    n=1
    En
    , En
    ∈ F Λߟ͑ͨ࣌ɺEn
    = En
    ∩ E + En
    ∩ EC ΑΓɺm ͷ༗ݶՃ๏ੑΛ༻͍ͯɺ
    m(En
    ) = m(En
    ∩ E) + m(En
    ∩ EC)
    ͕੒Γཱͭɻ͞Βʹɺ
    A ∩ E ⊂


    n=1
    (En
    ∩ E), A ∩ EC ⊂


    n=1
    (En
    ∩ EC)
    21

    View Slide

  22. ͱͳΔ͜ͱ͔Βɺ


    n=1
    m(En
    ) =


    n=1
    {
    m(En
    ∩ E) + m(En
    ∩ EC)
    }
    =


    n=1
    m(En
    ∩ E) +


    n=1
    m(En
    ∩ EC)
    ≥ Γ(A ∩ E) + Γ(A ∩ EC)
    ͕੒Γཱͭɻ͕ͨͬͯ͠ɺA ͷ͋ΒΏΔඃ෴ͷԼݶΛऔͬͯɺ
    Γ(A) ≥ Γ(A ∩ E) + Γ(A ∩ EC)
    ͕ಘΒΕΔɻ֎ଌ౓ͷྼՃ๏ੑ͔Βٯ޲͖ͷෆ౳ࣜ΋੒ΓཱͭͷͰɺE ͸ఆٛ 7 ͷ৚݅Λຬ͍ͨͯ͠Δɻ ˙
    ͜ͷ͜ͱ͔Βɺ༗ݶՃ๏଒ F ্ͷ༗ݶՃ๏తଌ౓ m ͕׬શՃ๏తͰ͋Δ͜ͱ͸ɺF ΛؚΉ σ-Ճ๏଒্ͷଌ
    ౓ µ ʹࣗવʹ֦ுͰ͖Δ͜ͱͷे෼৚݅Λ༩͑Δࣄ͕Θ͔Γ·͢ɻٯʹͦͷΑ͏ͳ֦ு͕͋Ε͹ɺଌ౓ µ ͕
    ׬શՃ๏తͰ͋Δ͜ͱ͔Βɺm ΋׬શՃ๏తʹͳΔͷͰɺඞཁ৚݅ͱ΋ݴ͑·͢ɻఆཧ 9 ͰݟͨΑ͏ʹɺRN
    ্ͷ۠ؒմͷ໘ੵ m ͸׬શՃ๏తͰ͋ΔͷͰɺLebesgue ଌ౓ʹ͍ͭͯ΋͜ͷҰൠ࿦͕౰ͯ͸·Γɺ۠ؒմͷ
    Lebesugue ଌ౓͸௚ײతͳҙຯͰͷ໘ੵͱҰக͠·͢ɻ
    ͨͩ͠ɺ͜ͷΑ͏ͳ֦ு͕ҰҙͰ͋Δͱ͸ݶΓ·ͤΜɻ֎ଌ౓ Γ Λ༻͍֦ͨுͷ৔߹͸ɺσ-Ճ๏଒ MΓ

    ΁ͷ֦ுͱͳΓ·͕͢ɺ͜Εͱ͸ผʹ σ-Ճ๏଒ B ⊂ MΓ
    ΁ͷ֦ு µ ͕͋ͬͨ৔߹ɺ͜Ε͕ Γ Λ༻͍֦ͨு
    ͱҰக͢Δ৚݅ͱͯ࣍͠ͷ֦ுఆཧ͕஌ΒΕ͍ͯ·͢ɻ
    ఆཧ 21 ۭؒ X ͷ༗ݶՃ๏଒ F ্ͷ༗ݶՃ๏తଌ౓ m ʹ͓͍ͯɺm(Xk
    ) < ∞ Λຬͨ͢Մࢉݸͷू߹
    Xk
    ∈ F (k = 1, 2, · · · ) ʹΑͬͯɺX =


    k=1
    Xk
    ͱॻ͚Δ΋ͷͱ͢Δɻ͜ͷ࣌ɺm ͕׬શՃ๏తͰ͋Γɺ֎ଌ
    ౓ Γ Λ༻͍ͨ σ-Ճ๏଒ MΓ
    ্΁ͷ֦ுɺ͓Αͼɺ͜Εͱ͸ผͷ σ-Ճ๏଒ B ⊂ MΓ
    ΁ͷ֦ு µ ͕͋Ε͹ɺ
    ೚ҙͷ B ∈ B ʹ͍ͭͯɺµ(B) = Γ(B) ͕੒Γཱͭɻ
    ʢূ໌ʣ
    ೚ҙͷ B ∈ B ʹ͍ͭͯɺඃ෴ B ⊂


    n=1
    En
    (En
    ∈ F) Λߟ͑Δͱɺµ ͕ m ͷ֦ுͰ͋Δ͜ͱ͔Β
    µ(En
    ) = m(En
    ) Ͱ͋Γɺ
    µ(B) ≤


    n=1
    µ(En
    ) =


    n=1
    m(En
    )
    ͕੒Γཱͭɻ͕ͨͬͯ͠ɺ͋ΒΏΔඃ෴ͷԼݶΛͱͬͯɺµ(B) ≤ Γ(B) ͕੒Γཱͭɻ
    ࣍ʹɺఆཧͷ৚݅ͱͯ͠༩͑ΒΕͨ Xk
    (k = 1, 2, · · · ) ʹରͯ͠ɺ
    k

    i=1
    Xk
    Λ৽͘͠ Xk
    ͱ͢Δͱɺ
    X1
    ⊂ X2
    ⊂ · · · , lim
    k→∞
    Xk
    = X
    Λݟͨ͢ Xk
    ∈ F (k = 1, 2, · · · ) ͕ಘΒΕΔɻ͜ͷ৽͍͠ Xk
    ͷ 1 ͭʹରͯ͠ɺB ⊂ Xk
    ͱͳΔ B ∈ B Λߟ
    ͑Δͱɺઌ΄Ͳͷ݁Ռɺ͓Αͼɺµ ͱ Γ ͕͍ͣΕ΋ m ͷ֦ுͰ͋Δ͜ͱΛ༻͍ͯɺ࣍ͷҰ࿈ͷؔ܎͕੒Γ
    ཱͭɻ
    µ(B) ≤ Γ(B) = Γ(Xk
    ) − Γ(Xk
    − B) = µ(Xk
    ) − Γ(Xk
    − B)
    ≤ µ(Xk
    ) − µ(Xk
    − B) = µ(B)
    22

    View Slide

  23. ͕ͨͬͯ͠ɺµ(B) ≤ Γ(B) ≤ µ(B)ɺ͢ͳΘͪɺµ(B) = Γ(B) Ͱ͋Δɻ
    ࠷ޙʹɺ೚ҙͷ B ∈ B Λߟ͑Δͱɺू߹ྻ {B ∩ Xk
    }k=1,2,···
    ͸୯ௐ૿ՃͰ B ʹऩଋͯ͠ɺઌ΄Ͳͷ݁Ռ
    ΑΓɺµ(B ∩ Xk
    ) = Γ(B ∩ Xk
    ) Ͱ͋Δ͜ͱ͔Βɺ͕࣍੒Γཱͭɻ
    µ(B) = lim
    k→∞
    µ(B ∩ Xk
    ) = lim
    k→∞
    Γ(B ∩ Xk
    ) = Γ(B)
    ͕ͨͬͯ͠ɺµ(B) = Γ(B) ͕੒Γཱͭɻ ˙
    ֦ுఆཧͷԠ༻ྫͱͯ͠ɺ௚ੵۭؒ΁ͷଌ౓ͷ֦ு͕͋Γ·͢ɻࠓɺ֦ுఆཧͷલఏΛຬͨ͢ 2 ͭͷଌ౓
    ۭؒ (X, BX
    , µ1
    )ɺ͓Αͼɺ(Y, BY
    , µ2
    ) ͕͋Δͱͯ͠ɺ௚ੵۭؒ Z = X × Y ͷதͰɺK = E × F (E ∈
    BX
    , F ∈ BY
    ) ͱ͍͏ܗͷू߹Λۣܗू߹ͱݺͼ·͢ɻ͜ͷ࣌ɺ༗ݶݸͷۣܗू߹ͷ௚࿨͔ΒͳΔू߹ F ͸
    ༗ݶՃ๏଒ͱͳΔͷͰɺ͜ͷ্ͷ༗ݶՃ๏ଌ౓ m Λ m(E × F) = µ1
    (E)µ2
    (F) Ͱఆٛ͢Δͱɺ͜Ε͸׬શՃ
    ๏తͰ͋Γɺ͞ΒʹɺF ͸ɺ֦ுఆཧͷલఏΛຬͨ͢͜ͱ͕ূ໌Ͱ͖·͢*3ɻ͕ͨͬͯ͠ɺF ΛؚΉ࠷খͷ σ-
    Ճ๏଒ BZ
    = B[F] Λߟ͑ͯɺ༗ݶՃ๏ଌ౓ m ͸ɺBZ
    ্ͷଌ౓ µ ʹҰҙʹ֦ு͢Δ͜ͱ͕Ͱ͖·͢ɻ͜Ε
    Λ µ1
    ͱ µ2
    ͷ௚ੵଌ౓ͱݺͼ·͢ɻ
    ಛʹϢʔΫϦουۭؒͷ৔߹͸ɺ࣍ͷؔ܎͕੒Γཱͪ·͢ɻ
    ఆཧ 22 RN ্ͷ Borel ू߹଒ͱ Lebesgue ଌ౓Λ BN
    ɺ
    ͓Αͼɺ
    µN
    ͱද࣌͢ɺ
    2 ͭͷଌ౓ۭؒ (Rp, Bp
    , µp
    )
    ͱ (Rq, Bq
    , µq
    ) ͔Β Rp+q ্ͷ Borel ू߹଒ Bp+q
    ΁ͷ௚ੵଌ౓ µ ͕Ұҙʹܾ·Γɺ͜ΕΛ׬උԽͨ͠΋
    ͷ͸ Rp+q ্ͷ Lebesgue ଌ౓ µp+q
    ʹҰக͢Δɻ
    ʢূ໌ʣ
    ଌ౓ۭؒ (Rp, Bp
    , µp
    ) ͱ (Rq, Bq
    , µq
    ) ͸ɺ֦ுఆཧͷલఏ৚݅Λຬ͍ͨͯ͠Δɻ͕ͨͬͯ͠ɺ௚ੵۭؒ
    Rp × Rq = Rp+q ʹ͓͍ͯɺ༗ݶݸͷۣܗू߹ͷ௚࿨͔ΒͳΔ༗ݶՃ๏଒Λ Fp,q
    ͱͯ͠ɺ͜ͷ্ͷ༗ݶՃ๏
    ଌ౓ m Λ m(A × B) = µp
    (A)µq
    (B) Ͱఆٛ͢Δͱɺm ͸ɺB[Fp,q
    ] ্ͷଌ౓ µ ʹҰҙʹ֦ு͞ΕΔɻ
    ͜͜ͰɺRp+q ͷ۠ؒմ͸ Fp,q
    ʹؚ·ΕΔͷͰɺFp,q
    ⊃ Fp+q
    ͕੒ΓཱͭɻҰํɺFp,q
    ͷཁૉ͸ Borel ू
    ߹଒ Bp+q
    ʹؚ·ΕΔͷͰɺBp+q
    ⊃ Fp,q
    ⊃ Fp+q
    ͱ͍͏ؔ܎͕੒Γཱͭɻ͜ͷ֤߲Ͱɺͦͷ߲ΛؚΉ࠷খͷ
    Borel ू߹଒ΛऔΔͱɺ
    Bp+q
    ⊃ B[Fp,q
    ] ⊃ B[Fp+q
    ]
    ͕ಘΒΕΔɻ͞Βʹɺఆཧ 11 ΑΓ B[Fp+q
    ] = Bp+q
    ͱͳΔͷͰɺBp+q
    ⊃ B[Fp,q
    ] ⊃ Bp+q
    ɺ͢ͳΘͪɺ
    Bp+q
    = B[Fp,q
    ] ͕੒Γཱͭɻ͕ͨͬͯ͠ɺઌ΄Ͳͷଌ౓ µ ͸ɺBp+q
    ্ͷଌ౓ʹͳ͍ͬͯΔɻ
    ҰํɺFp,q
    ্ͷ༗ݶՃ๏ଌ౓ m ͷ B[Fp,q
    ](= Bp+q
    ) ΁ͷ֦ு͸ҰҙͳͷͰɺ΋ͱ΋ͱ Bp+q
    ্ʹఆٛ͞
    Εͨ Lebesgue ଌ౓ µp+q
    ʹҰக͢Δɻఆཧ 19 ΑΓɺ͜ΕΛ׬උԽͨ͠΋ͷ͸ɺRp+q ্ͷ Lebesgue ଌ౓
    µp+q
    ʹҰக͢Δɻ ˙
    5 Մଌؔ਺ͱੵ෼
    ͜͜Ͱ͸ɺҰൠͷଌ౓ۭؒ (X, B, µ) ʹ͓͚ΔՄଌؔ਺ͱͦͷੵ෼ͷఆٛΛͳΔ΂͘ʮ࠷୹ܦ࿏ʯͰ༩͑
    ·͢ɻͦͷޙɺվΊͯɺ͜ΕΒͷ͞·͟·ͳੑ࣭Λ͍͖ࣔͯ͠·͢ɻ͜ΕҎ߱͸ɺू߹ E ⊂ X Ͱఆٛ͞Εͨ
    *3 ۩ମతͳূ໌͸ɺ[1] Λࢀরɻ
    23

    View Slide

  24. ʢ±∞ ΛؚΉʣ࣮਺஋ؔ਺ f ͕༩͑ΒΕͨ࣌ɺf ʹؔ͢Δ৚݅Λຬͨ͢఺ x ͷू߹Λ࣍ͷΑ͏ʹද͠·͢ɻ
    E(f > a) = {x ∈ E; f(x) > a}
    E(f = a) = {x ∈ E; f(x) = a}
    E(a < f ≤ b) = {x ∈ E; a < f(x) ≤ b}
    ·ͨɺҰൠʹ࣮਺஋ؔ਺ f ͱݴͬͨ৔߹ɺf ͕औΔ஋ʹ͸ ±∞ ΛؚΊͯߟ͑·͢ɻ
    5.1 Մଌؔ਺ͱੵ෼ͷఆٛ
    ఆٛ 8 ଌ౓ۭؒ (X, B, µ) ʹ͓͍ͯɺू߹ E ⊂ X Ͱఆٛ͞Ε࣮ͨ਺஋ؔ਺ f(x) ͕ɺ೚ҙͷ a ∈ R ʹର
    ͯ͠ɺE(f > a) ∈ B Λຬͨ࣌͢ɺ͜ΕΛՄଌؔ਺ͱݺͿɻ
    f ͕Մଌؔ਺Ͱ͋Ε͹ɺ࣍ͷΑ͏ͳू߹΋ B ʹଐ͢Δ͜ͱ͕ݴ͑·͢ɻ
    E(f ≤ a) = E − E(f > a) ∈ B
    E(a ≤ f < b) = E(f < b) − E(f < a) ∈ B
    E(f ≥ a) =


    n=1
    E
    (
    f > a −
    1
    n
    )
    ∈ B
    E(f = a) = E(f ≥ a) ∩ E(f ≤ a) ∈ B
    ͜ͷ΄͔ʹ͸ɺՄଌؔ਺ͷઢܕ݁߹ɺ͓ΑͼɺՄଌؔ਺ͷྻͷۃݶ΋Մଌؔ਺ʹͳΔ͜ͱ͕ࣔ͞Ε·͢ʢূ
    ໌͸লུʣ
    ɻ
    ఆٛ 9 E ⊂ X Ͱఆٛ͞Εͨؔ਺ f ͕ɺఆٛҬ E Λ E = E1
    + E2
    + · · · + En
    ͱ༗ݶݸͷू߹ͷ௚࿨ʹ෼
    ղͯ͠ɺ
    f(x) =
    n

    k=1
    αi
    χEi
    (x) (12)
    ͱ͍͏ܗͰද͢͜ͱ͕Ͱ͖Δ৔߹ɺf Λ୯ؔ਺ͱݺͿɻ͜͜ʹɺαi
    ͸ʢ±∞ ͸ؚ·ͳ͍ʣ࣮਺஋ͰɺχEi
    ͸ɺ
    χEi
    (x) =
    {
    1 (x ∈ Ei
    )
    0 (x /
    ∈ Ei
    )
    Ͱఆٛ͞ΕΔಛੑؔ਺Ͱ͋Δɻ
    ͳ͓ɺ(12) ͷܗͰ୯ؔ਺͕༩͑ΒΕͨ৔߹ɺαi
    = αj
    ͱͳΔ෦෼ʹ͍ͭͯ͸ɺ2 ͭͷू߹ Ei
    , Ej
    Λ Ei
    +Ej
    ʹ·ͱΊΔ͜ͱͰɺαi
    ̸= αj
    (i ̸= j) ͱ͢Δ͜ͱ͕Ͱ͖·͢ɻ͞Βʹɺαi
    Λ߱ॱʹฒ΂ସ͑ͨ΋ͷΛվΊͯ
    α1
    > α2
    > · · · > αn
    ͱఆٛͰ͖·͢ɻ͜ΕΛ୯ؔ਺ͷਖ਼نܗͱݺͿ͜ͱʹ͠·͢ɻ༩͑ΒΕͨ୯ؔ਺ f ʹͭ
    ͍ͯɺͦͷਖ਼نܗ͸Ұҙʹܾ·Γ·͢ɻ
    ఆཧ 23 ୯ؔ਺ f ͕Մଌؔ਺Ͱ͋ΔͨΊͷඞཁे෼৚݅͸ɺਖ਼نܗͰදͨ͠ࡍʹɺ͢΂ͯͷ i ʹ͍ͭͯ
    Ei
    ∈ B ͱͳΔ͜ͱͰ͋Δɻ
    ʢূ໌ʣ
    ʢे෼৚݅ʣ͢΂ͯͷ i ʹ͍ͭͯ Ei
    ∈ B ͱͳΔ࣌ɺE(f > a) ͸ɺαi
    > a Λຬͨ͢ Ei
    ͷ௚࿨ͳͷͰɺ
    E(f > a) ∈ B ͕੒Γཱͭɻ
    24

    View Slide

  25. ʢඞཁ৚݅ʣf ͕Մଌؔ਺ͱ͢Δ࣌ɺͦͷਖ਼نܗʹ͓͍ͯɺE
    (
    f >
    α1
    + α2
    2
    )
    = E1
    ΑΓɺE1
    ∈ B ͕੒Γ
    ཱͭɻಉ༷ʹɺE
    (
    f >
    α2
    + α3
    2
    )
    = E1
    + E2
    ΑΓɺE1
    + E2
    ∈ B Ͱ͋Γɺઌ΄Ͳͷ݁Ռͱ͋Θͤͯ E2
    ∈ B
    ͕੒ΓཱͭɻҰൠʹɺE
    (
    f >
    αi
    + αi+1
    2
    )
    = E1
    + · · · + Ei
    ͱͳΔͷͰɺ਺ֶతؼೲ๏ʹΑΓɺ͢΂ͯͷ i
    ʹ͍ͭͯ Ei
    ∈ B ͕੒Γཱͭɻ ˙
    f ≥ 0 Ͱ͋ΔՄଌͳ୯ؔ਺ʹ͍ͭͯ͸ɺۣܗͷ໘ੵͱͯࣗ͠વʹੵ෼Λఆٛ͢Δ͜ͱ͕Ͱ͖·͢ɻ
    ఆٛ 10 E ⊂ X Ͱఆٛ͞Εͨɺf ≥ 0 Λຬͨ͢Մଌͳ୯ؔ਺ͷਖ਼نܗΛ f =
    n

    k=1
    αi
    χEi
    ͱͯ͠ɺE ্ͷੵ
    ෼Λ࣍ࣜͰఆٛ͢Δɻ

    E
    f dµ =
    n

    i=1
    αi
    µ(Ei
    ) (13)
    ͜͜Ͱ͸ɺਖ਼نܗΛ༻͍ͯੵ෼Λఆ͍ٛͯ͠·͕͢ɺਖ਼نܗҎ֎ͷ৔߹Ͱ΋ɺ͢΂ͯͷ Ei
    ʹ͍ͭͯ Ei
    ∈ B
    Ͱ͋Ε͹ɺͦͷੵ෼͸ (13) Ͱܭࢉ͢Δ͜ͱ͕Ͱ͖·͢ɻ
    ͦͯ͠ɺ୯ؔ਺Ҏ֎ͷҰൠͷؔ਺ f ≥ 0 ʹ͍ͭͯ͸ɺ୯ௐ૿ՃͰ f ʹऩଋ͢Δ୯ؔ਺ྻ f1
    , f2
    , · · · Λ༻
    ͍ͯੵ෼Λఆٛ͠·͢ɻ͜ͷΑ͏ͳ୯ؔ਺ྻ͸ɺͨͱ͑͹࣍ͷํ๏Ͱߏ੒Ͱ͖·͢ɻfn
    ͸ɺE(f ≥ n) ্Ͱ
    ͸ fn
    = n ΛऔΓɺͦͷଞͷྖҬʹ͍ͭͯ͸ɺ۠ؒ [0, n) Λ 0,
    1
    2n
    ,
    2
    2n
    , · · · ,
    2nn − 1
    2n
    ͱ 2nn ౳෼ͨ͠஋Ͱ
    f(x) ͷ஋ΛԼ͔Βۙࣅ͠·͢ɻ͜Ε͸ɺ۠ؒ [0, 1), [1, 2), · · · ͷͦΕͧΕΛ 2n ౳෼͢Δ͜ͱʹ૬౰͢Δͷ
    Ͱɺn + 1 ͷ෼ׂ͸ɺn ͷ෼ׂͷࡉ෼ʹͳ͍ͬͯΔ఺ʹ஫ҙ͍ͯͩ͘͠͞ɻ۩ମతʹ͸ɺk = 0, 1, · · · , 2nn − 1
    ʹରͯ͠ɺE
    (
    k
    2n
    ≤ f <
    k + 1
    2n
    )
    ্Ͱ fn
    =
    k
    2n
    ͱఆٛ͠·͢ɻf ͕ՄଌͰ͋Ε͹ɺͦΕͧΕͷ fn
    ΋Մଌʹ
    ͳΓ·͢ɻ
    ͦ͜Ͱɺ͜ͷΑ͏ͳ୯ؔ਺ྻΛ༻͍ͯɺf ≥ 0 Ͱ͋ΔՄଌؔ਺ f ͷੵ෼Λ

    E
    f dµ = lim
    n→∞

    E
    fn

    Ͱఆٛ͠·͢ɻͨͩ͠ɺ͜Ε͕ Well-defined ʹͳΔͨΊʹ͸ɺӈลͷ஋͕୯ؔ਺ྻͷऔΓํʹΑΒͳ͍ࣄΛ
    ࣔ͢ඞཁ͕͋Γ·͢ɻ͜ͷޙ͸ɺ͜ͷࣄ࣮ΛॱΛ௥͍͖ͬͯࣔͯ͠·͢ɻ
    ิ୊ 5 f(x) ≥ 0, g(x) ≥ 0 Λ E ্ͷՄଌͳ୯ؔ਺ͱ͢Δͱɺ

    E
    (f + g) dµ =

    E
    f dµ +

    E
    g dµ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    f(x) ΋͘͠͸ g(x) ͷ஋͕ ∞ ʹͳΔ఺͕͋Δ৔߹͸ɺ྆ลڞʹ ∞ ͱͳΔͷͰɺ͔֬ʹ੒ཱ͢Δɻͦ͜Ͱ
    ҎԼͰ͸ɺf(x) < ∞, g(x) < ∞ ͷ৔߹Λߟ͑Δɻ
    f =
    n

    j=1
    αj
    χFj
    , E = F1
    + · · · + Fn
    g =
    m

    k=1
    βk
    χGk
    , E = G1
    + · · · + Gm
    25

    View Slide

  26. ͱ͢Δ࣌ɺ೚ҙͷ j = 1, · · · , n ʹରͯ͠ɺ
    Fj
    = Fj
    ∩ E = Fj
    ∩ (G1
    + · · · + Gm
    ) = Fj
    ∩ G1
    + · · · + Fj
    ∩ Gm
    ΑΓɺχFj
    =
    m

    k=1
    χFj ∩Gk
    ͱͳΓɺf =
    n

    j=1
    m

    k=1
    αj
    χFj ∩Gk
    ͕੒Γཱͭɻಉ༷ʹɺg =
    n

    j=1
    m

    k=1
    βk
    χFj ∩Gk
    ͕੒
    Γཱͭɻ͕ͨͬͯ͠ɺ
    f + g =
    n

    j=1
    m

    k=1
    (αj
    + βk
    )χFj ∩Gk
    Ͱ͋Γɺf + g ΋Մଌͳ୯ؔ਺ͱͳΓɺͦͷੵ෼͸࣍ͷΑ͏ʹܭࢉ͞ΕΔɻ

    E
    (f + g) dµ =
    n

    j=1
    m

    k=1
    (αj
    + βk
    )µ(Fj
    ∩ Gk
    )
    =
    n

    j=1
    αj
    m

    k=1
    µ(Fj
    ∩ Gk
    ) +
    m

    k=1
    βk
    n

    j=1
    µ(Gk
    ∩ Fj
    )
    =
    n

    j=1
    αj
    µ(Fj
    ) +
    m

    k=1
    βk
    µ(Gk
    ) =

    E
    f dµ +

    E
    g dµ
    ˙
    ิ୊ 6 f(x) ≥ 0 Λ E ্ͷՄଌͳ୯ؔ਺ͱ͢ΔͱɺA + B ⊂ E ʹରͯ͠ɺ

    A+B
    f dµ =

    A
    f dµ +

    B
    f dµ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    f =
    n

    i=1
    αi
    χEi
    , E = E1
    + · · · + En
    ͱ͢Δͱɺ

    A+B
    f dµ =
    n

    i=1
    αi
    µ(Ei
    ∩ (A + B)) =
    n

    i=1
    αi
    µ(Ei
    ∩ A) +
    n

    i=1
    αi
    µ(Ei
    ∩ B)
    =

    A
    f dµ +

    B
    f dµ
    ˙
    ิ୊ 7 fn
    ≥ 0 (n = 1, 2, · · · ) Λ୯ௐ૿Ճ͢Δ E ্ͷՄଌͳ୯ؔ਺ྻɺg ≥ 0 Λ E ্ͷՄଌͳ୯ؔ਺ͱ͠
    ͯɺE ͷ֤఺Ͱ lim
    n→∞
    fn
    ≥ g ͱͳΔ࣌ɺ
    lim
    n→∞

    E
    fn
    dµ ≥

    E
    g dµ
    ͕੒Γཱͭ
    26

    View Slide

  27. ʢূ໌ʣ
    E0
    = E(g = 0), F = E − E0
    ͱஔ͘ͱɺิ୊ 6 Λ༻͍ͯɺ

    E
    fn
    dµ =

    E0
    fn
    dµ +

    F
    fn
    dµ ≥

    F
    fn


    E
    g dµ =

    E0
    g dµ +

    F
    g dµ =

    F
    g dµ
    ͱͳΔͷͰɺ lim
    n→∞

    F
    fn
    dµ ≥

    F
    g dµ ͕ࣔͤΕ͹Α͍ɻ͕ͨͬͯ͠ɺ͸͡Ί͔Β E ͷ্Ͱ g > 0 ͱͯ͠ূ
    ໌͢Ε͹Α͍ɻ
    ࠓɺg =
    n

    i=1
    αi
    χEi
    ͱͯ͠ɺαi
    (i = 1, · · · , n) ͷ࠷খ஋ͱ࠷େ஋ΛͦΕͧΕ α, β ͱ͢Δͱɺ0 < ϵ < α Λຬ
    ͨ͢೚ҙͷ ϵ ʹରͯ͠ɺg − ϵ ͸ g − ϵ > 0 Λຬͨ͢୯ؔ਺ʹͳΔɻ·ͨɺFn
    = E(fn
    > g − ϵ) (n = 1, 2, · · · )
    ͱஔ͘ͱɺ{fn
    } ͕୯ௐ૿ՃͰ lim
    n→∞
    fn
    ≥ g ͱͳΔ͜ͱ͔Βɺ{Fn
    } ͸ू߹ͱͯ͠୯ௐ૿ՃͰ lim
    n→∞
    Fn
    = E ͕
    ੒Γཱͭɻ͕ͨͬͯ͠ɺ lim
    n→∞
    µ(E − Fn
    ) = 0 ͱͳΔɻ
    ͜͜Ͱɺµ(E) = ∞ ͱ͢Δͱɺ

    E
    fn
    dµ ≥

    Fn
    fn
    dµ ≥

    Fn
    (g − ϵ) dµ ≥ (α − ϵ)µ(Fn
    )
    ʹ͓͍ͯɺn → ∞ ͷۃݶΛऔΔͱɺ
    lim
    n→∞

    E
    fn
    dµ ≥ (α − ϵ)µ(E) = ∞
    ͱͳΓɺ
    lim
    n→∞

    E
    fn
    dµ ≥

    E
    g dµ
    ͸ඞͣ੒ཱ͢Δɻ͕ͨͬͯ͠ɺ͜ͷޙ͸ɺµ(E) < ∞ ͷ৔߹Λߟ͑Δɻ
    ࠓɺ lim
    n→∞
    µ(E − Fn
    ) = 0 ΑΓɺे෼ʹେ͖ͳ n ʹରͯ͠ µ(E − Fn
    ) < ϵ Ͱ͋Γɺ͜ͷ࣌ɺิ୊ 5ɺิ୊ 6
    Λ༻͍ͯɺ࣍ͷؔ܎͕੒Γཱͭɻ

    E
    fn
    dµ ≥

    Fn
    fn
    dµ ≥

    Fn
    (g − ϵ) dµ =

    Fn
    g dµ − ϵµ(Fn
    )
    =

    E
    g dµ −

    E−Fn
    g dµ − ϵµ(Fn
    )


    E
    g dµ −

    E−Fn
    g dµ − ϵµ(E) (∵ µ(E) ≥ µ(Fn
    ))


    E
    g dµ − βµ(E − Fn
    ) − ϵµ(E) (∵ β ≥ g)
    >

    E
    g dµ − ϵ{β + µ(E)} (∵ ϵ > µ(E − Fn
    ))
    n → ∞ ͷۃݶΛऔΔͱɺ
    lim
    n→∞

    E
    fn
    dµ ≥

    E
    g dµ − ϵ{β + µ(E)}
    ͱͳΓɺµ(E) < 0 Ͱ͋Δ͜ͱ͔Βɺϵ → 0 ͷۃݶʹΑΓɺ
    lim
    n→∞

    E
    fn
    dµ ≥

    E
    g dµ
    27

    View Slide

  28. ͕ಘΒΕΔɻ ˙
    ఆཧ 24 fn
    ≥ 0 (n = 1, 2, · · · ) ͓Αͼ gn
    ≥ 0 (n = 1, 2, · · · ) Λ୯ௐ૿Ճ͢Δ E ্ͷ୯ؔ਺ྻͱͯ͠ɺ
    lim
    n→∞
    fn
    = lim
    n→∞
    gn
    ͱ͢Δͱɺ
    lim
    n→∞

    E
    fn
    dµ = lim
    n→∞

    E
    gn

    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    gn
    ͸୯ௐ૿ՃͳͷͰɺ೚ҙͷ m Λݻఆ͢Δͱɺgm
    ≤ lim
    n→∞
    gn
    = lim
    n→∞
    fn
    ͕੒ΓཱͭͷͰɺิ୊ 7 ΑΓɺ
    lim
    n→∞

    E
    fn
    dµ ≥

    E
    gm

    ͕੒Γཱͪɺm → ∞ ͷۃݶʹΑΓɺ
    lim
    n→∞

    E
    fn
    dµ ≥ lim
    m→∞

    E
    gm

    ͕ಘΒΕΔɻfn
    ͱ gn
    ΛೖΕସ͑ͯಉٞ͡࿦Λ͢Δͱɺٯ޲͖ͷෆ౳ࣜ΋ಘΒΕΔͷͰɺ
    lim
    n→∞

    E
    fn
    dµ = lim
    m→∞

    E
    gm

    ͕ݴ͑Δɻ ˙
    ఆཧ 24 ΑΓɺ ୯ؔ਺ͱ͸ݶΒͳ͍Մଌؔ਺ f ≥ 0 ʹ͍ͭͯɺ࣍Ͱੵ෼Λఆٛ͢Δࣄ͕Ͱ͖·͢ɻ
    ఆٛ 11 E ্ͷՄଌؔ਺ f ≥ 0 ʹ͍ͭͯɺE ͷ֤఺Ͱ f ʹऩଋ͢Δ୯ௐ૿Ճͳ୯ؔ਺ྻ fn
    ≥ 0 (n =
    1, 2, · · · ) Λ༻͍ͯɺ࣍Λ E Ͱͷ f ͷੵ෼ͱ͢Δɻ

    E
    f dµ = lim
    n→∞

    E
    fn

    ·ͨɺ͜ͷΑ͏ͳ୯ؔ਺ྻ fn
    ≥ 0 ͸ඞͣଘࡏ͢Δɻ
    f ≥ 0 ʹݶΒͳ͍ҰൠͷՄଌؔ਺ʹ͍ͭͯ͸ɺਖ਼ͷ෦෼ͱෛͷ෦෼ΛΘ͚ͯੵ෼Λܭࢉ͠·͢ɻ
    ఆٛ 12 E ্ͷՄଌؔ਺ f ʹ͍ͭͯɺf+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0} ͱ͢Δͱɺf =
    f+ − f− (f+ ≥ 0, f− ≥ 0) ͱͳΔͷͰɺf+ ͱ f− ͦΕͧΕͷੵ෼͕ఆٛ 11 ʹΑͬͯఆٛ͞ΕΔɻ͜ͷ 2
    ͭͷ஋ͷ͏ͪɺগͳ͘ͱ΋Ұํ͕༗ݶͷ৔߹ʹɺf ͸ E ্Ͱੵ෼ՄೳͰ͋Γɺ࣍Λͦͷੵ෼஋ͱ͢Δɻ

    E
    f dµ =

    E
    f+ dµ −

    E
    f− dµ
    5.2 Lebesgue ͷ߲ผੵ෼ఆཧ
    ϦʔϚϯੵ෼ͱҟͳΔϧϕʔάੵ෼ͷಛ௃ͱͯ͠ɺ
    ʮؔ਺ྻ͕ੵ෼Մೳͳؔ਺ͰҰ༷ʹ཈͑ΒΕΔʯ͜ͱ͕ɺ
    ؔ਺ྻͷੵ෼ͷۃݶ͕ۃݶͷੵ෼ʹҰக͢Δे෼৚݅ʹͳΔͱ͍͏΋ͷ͕͋Γ·͢ɻ
    ʢϦʔϚϯੵ෼Ͱ͸͜Ε
    28

    View Slide

  29. ͸੒Γཱͪ·ͤΜɻ
    ʣ͜ͷఆཧΛূ໌͍͖ͯ͠·͢ɻ͜ΕҎ߱ͷٞ࿦Ͱ͸ɺଌ౓ۭؒ (X, B, µ) Λݻఆͯ͠ɺ
    ग़ͯ͘Δू߹͸͢΂ͯ B ʹଐ͓ͯ͠Γɺؔ਺͸͢΂ͯՄଌؔ਺Ͱ͋Δ΋ͷͱ͠·͢ɻ
    ิ୊ 8 ू߹ E ্ͷՄଌؔ਺ f ≥ 0 ʹରͯ͠ɺ୯ؔ਺ͷྻ gn
    ≥ 0 (n = 1, 2, · · · ) Ͱ E ͷ֤఺ x Ͱ
    f(x) =


    n=1
    g(x) ͱͳΔ΋ͷ͕ଘࡏ͢Δɻ·ͨɺ͜ͷ৚݅Λຬͨ͢೚ҙͷ୯ؔ਺ྻ gn
    ʹ͍ͭͯɺ

    E
    f dµ =


    n=1

    E
    gn

    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    f ͕Մଌؔ਺Ͱ͋Δ͜ͱ͔Βɺ୯ௐ૿Ճͳ୯ؔ਺ྻ hn
    ≥ 0 ͰɺE ͷ֤఺Ͱ f ʹऩଋͯ͠ɺ

    E
    f dµ = lim
    n→∞

    E
    hn

    Λຬͨ͢΋ͷ͕ଘࡏ͢Δɻͦ͜Ͱɺg1
    = h1
    , gn
    = hn
    − hn−1
    (n ≥ 2) ͱ͢Ε͹ɺิ୊ͷ৚݅Λຬͨ͢ gn
    ≥ 0
    ͱͳΔɻ
    Ұํɺ͜ͷΑ͏ͳ୯ؔ਺ྻ gn
    ≥ 0 ͕ଘࡏ͢Δ࣌ɺhN
    =
    N

    n=1
    gn
    ͱஔ͘ͱɺิ୊ 5 ΑΓɺ

    E
    hN
    dµ =
    N

    n=1

    E
    gn
    dµ ͕੒Γཱͭɻ͕ͨͬͯ͠ɺ

    E
    f dµ = lim
    N→∞

    E
    hN
    dµ = lim
    N→∞
    N

    n=1

    E
    gn
    dµ =


    n=1

    E
    gn

    ͕੒Γཱͭɻ ˙
    ఆཧ 25 E ্ͷՄଌؔ਺ͷྻ fn
    ≥ 0 (n = 1, 2, · · · ) ͕͋ΓɺE ͷ֤఺Ͱ x Ͱ f(x) =


    n=1
    fn
    (x) ͱͳΔ࣌ɺ

    E
    f dµ =


    n=1

    E
    fn

    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    ͦΕͧΕͷ fn
    ʹରͯ͠ɺิ୊ 8 ΑΓɺ୯ؔ਺ͷྻ gnm
    (m = 1, 2, · · · ) ≥ 0 ͕͋Γɺ
    fn
    (x) =


    m=1
    gnm
    (x),

    E
    fn
    dµ =


    m=1

    E
    gnm

    ͕੒Γཱͭɻ͜ͷ࣌ɺೋॏڃ਺ f(x) =


    n=1


    m=1
    gnm
    (x) ʹ͓͍ͯɺgnm
    (n, m = 1, 2, · · · ) ΛҰྻʹฒ΂ସ͑
    ͨ΋ͷΛ gn
    ͱͯ͠ɺ
    f(x) =


    n=1
    gn
    (x) =


    n=1


    m=1
    gnm
    (x)
    29

    View Slide

  30. ͕੒Γཱͪɺ࠶ͼɺิ୊ 8 ΑΓɺ

    E
    f dµ =


    n=1

    E
    gn

    ͕ಘΒΕΔɻ͞Βʹɺڃ਺


    n=1

    E
    gn
    dµ ͷ࿨ͷॱংΛݩͷೋॏڃ਺ͷॱংʹ໭͢ͱɺ

    n=1

    E
    gn
    dµ =


    n=1


    m=1

    E
    gnm
    dµ =


    n=1

    E
    fn

    ͱͳΓɺ

    E
    f dµ =


    n=1

    E
    fn
    dµ ͕੒Γཱͭɻ
    ʢೋॏڃ਺ͷ࿨ͷॱং͕ަ׵Ͱ͖Δ͜ͱʹ͍ͭͯ͸ɺ[2] Λࢀ
    রɻ
    ʣ ˙
    ఆཧ 26 E ্ͷՄଌؔ਺ͷྻ 0 ≤ f1
    ≤ f2
    ≤ · · · ͕ E ͷ֤఺ x Ͱ lim
    n→∞
    fn
    (x) = f(x) ͱͳΔ࣌ɺ

    E
    f dµ = lim
    n→∞

    E
    fn

    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    µ(E(fn
    = ∞)) > 0 ͱͳΔ n ͕ଘࡏ͢Δ৔߹ɺࣔ͢΂͖౳ࣜ͸ɺ྆ลڞʹ ∞ ͱͳͬͯ੒ཱ͢Δɻ͢΂ͯ
    ͷ n Ͱ µ(E(fn
    = ∞)) = 0 ͷ৔߹ɺE0
    =


    n=1
    E(fn
    = ∞) ΋ଌ౓ 0 Ͱੵ෼஋ʹӨڹ͠ͳ͍ͷͰɺE ͷ֤఺
    Ͱ fn
    < ∞ ͱԾఆͯ͠΋ҰൠੑΛࣦΘͳ͍ɻ
    ࠓɺg1
    = f1
    , gn
    = fn
    − fn−1
    (n ≥ 2) ͱ͢Δͱɺ
    f(x) =


    n=1
    gn
    (x), gn
    ≥ 0
    ͱͳΔͷͰɺఆཧ 25ɺ͓Αͼɺิ୊ 5 ΑΓɺ

    E
    f dµ =


    n=1

    E
    gn
    dµ = lim
    N→∞
    N

    n=1

    E
    gn
    dµ = lim
    N→∞

    E
    fn

    ͕੒Γཱͭɻ ˙
    ఆཧ 27 E ্ͷՄଌؔ਺ͷྻ fn
    ≥ 0 (n = 1, 2, · · · ) ʹ͍ͭͯɺ

    E
    lim
    n→∞
    fn
    dµ ≤ lim
    n→∞

    E
    fn

    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    30

    View Slide

  31. gn
    (x) = inf
    k≥n
    fk
    (x) ͱஔ͘ͱɺ0 ≤ g1
    ≤ g2
    ≤ · · · ͰɺԼۃݶͷఆٛΑΓɺE ͷ֤఺Ͱ lim
    n→∞
    gn
    (x) =
    lim
    n→∞
    fn
    (x) ͱͳΔɻ͕ͨͬͯ͠ɺఆཧ 26 ΑΓɺ

    E
    lim
    n→∞
    fn
    dµ = lim
    n→∞

    E
    gn
    dµ = lim
    n→∞

    E
    gn

    ͕੒Γཱͭɻ͜͜Ͱɺ2 ͭ໨ͷ౳߸͸ɺ਺ྻͷۃݶ͕ଘࡏ͢Δ৔߹ɺͦͷ஋͸ԼۃݶʹҰக͢Δͱ͍͏ࣄ࣮Λ
    ༻͍͍ͯΔɻ
    Ұํɺ೚ҙͷ n ʹ͍ͭͯɺgn
    ≤ fn
    ΑΓɺ

    E
    gn
    dµ ≤

    E
    fn

    ͕੒Γཱͪɺ྆ลͷԼۃݶΛऔΔͱɺઌͷ݁Ռͱ͋Θͤͯɺ

    E
    lim
    n→∞
    fn
    dµ ≤ lim
    n→∞

    E
    fn

    ͕ಘΒΕΔɻ ˙
    ఆཧ 28 E ্ͷՄଌؔ਺ͷྻ fn
    (n = 1, 2, · · · ) ͕ E ্ͷੵ෼Մೳͳؔ਺ φ ≥ 0 ʹରͯ͠ɺE ͷ֤఺Ͱ
    |fn
    (x)| ≤ φ(x) (n = 1, 2, · · · )
    Λຬͨ࣌͢ɺf = lim
    n→∞
    fn
    ͕ଘࡏ͢Ε͹ɺ
    lim
    n→∞

    E
    fn
    dµ =

    E
    f dµ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    |fn
    | ≤ φ ΑΓɺφ + fn
    ≥ 0 ͳͷͰɺఆཧ 27 ΑΓɺ

    E
    lim
    n→∞
    (φ + fn
    ) dµ ≤ lim
    n→∞

    E
    (φ + fn
    ) dµ
    Ͱ͋Γɺ͜ΕΑΓɺ ∫
    E
    lim
    n→∞
    fn
    dµ ≤ lim
    n→∞

    E
    fn

    ͕੒Γཱͭɻ
    ಉ༷ʹɺφ − fn
    ≥ 0 ͳͷͰɺఆཧ 27 ΑΓɺ

    E
    lim
    n→∞
    (φ − fn
    ) dµ ≤ lim
    n→∞

    E
    (φ − fn
    ) dµ
    Ͱ͋Γɺ͜ΕΑΓɺ ∫
    E
    lim
    n→∞
    (−fn
    ) dµ ≤ lim
    n→∞

    E
    (−fn
    ) dµ
    ͕੒Γཱͭɻ͜͜Ͱɺ lim
    n→∞
    (−fn
    ) = − lim
    n→∞
    fn
    Λ༻͍Δͱɺ

    E
    lim
    n→∞
    fn
    dµ ≥ lim
    n→∞

    E
    fn

    31

    View Slide

  32. ͕ಘΒΕΔɻ
    ͕ͨͬͯ͠ɺf = lim
    n→∞
    fn
    ͕ଘࡏ͢Ε͹ɺf = lim
    n→∞
    f = lim
    n→∞
    f ͱͳΔͷͰɺ
    lim
    n→∞

    E
    fn
    dµ ≤

    E
    f dµ ≤ lim
    n→∞

    E
    fn

    ͕੒ΓཱͭɻҰํɺҰൠʹ lim
    n→∞

    E
    fn
    dµ ≥ lim
    n→∞

    E
    fn
    dµ ͳͷͰɺ
    lim
    n→∞

    E
    fn
    dµ =

    E
    f dµ = lim
    n→∞

    E
    fn

    ͢ͳΘͪɺ
    lim
    n→∞

    E
    fn
    dµ =

    E
    f dµ
    ͕੒Γཱͭɻ ˙
    ͜Ε͕ Lebesgue ͷ߲ผੵ෼ఆཧʹͳΓ·͢ɻϦʔϚϯੵ෼ͷ৔߹ɺۃݶͱੵ෼ΛೖΕସ͑ΒΕΔಉ༷ͷे
    ෼৚݅ͱͯ͠ɺؔ਺ྻ fn
    ͕Ұ༷ऩଋ͢Δͱ͍͏৚͕݅͋Γ·͕͢ɺ͜Ε͸ϧϕʔάੵ෼Ͱ΋੒Γཱͪ·͢ɻ
    ิ୊ 9 E ্ͷੵ෼Մೳͳؔ਺ͷྻ fn
    (n = 1, 2, · · · ) ͕ؔ਺ f ʹ E ্ͰҰ༷ऩଋ͢Δ࣌ɺf ΋ੵ෼ՄೳͰɺ
    lim
    n→∞

    E
    fn
    dµ =

    E
    f dµ
    ͕੒Γཱͭɻ
    ʢূ໌ʣ
    fn
    ͕ f ʹҰ༷ऩଋ͢Δ͜ͱ͔Βɺ
    n ≥ N Ͱ͋Ε͹ɺ
    ͢΂ͯͷ x ∈ E ʹରͯ͠ɺ
    |fn
    (x)−fN
    (x)| < 1ɺ
    ͢ͳΘ
    ͪɺ
    |fn
    (x)| < |fN
    (x)|+1 ͱͳΔ N ͕ଘࡏ͢Δɻͦ͜Ͱɺ
    φ(x) = |fN
    (x)|+1 ͱͯ͠ɺ
    fn
    (n = N, N +1, . . . )
    ʹఆཧ 28 Λద༻͢Ε͹Α͍ɻ ˙
    ࢀߟจݙ
    [1]ʮϧϕʔάੵ෼ೖ໳ʯҏ౻ ਗ਼ࡾʢஶʣী՚๪
    [2] ೋॏڃ਺ͷॱংަ׵ʹؔ͢Δఆཧʢhttps://enakai00.hatenablog.com/entry/2022/11/23/162302ʣ
    32

    View Slide