Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ガウス過程回帰とベイズ最適化
Search
NearMeの技術発表資料です
PRO
November 15, 2024
Science
1
100
ガウス過程回帰とベイズ最適化
NearMeの技術発表資料です
PRO
November 15, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
WASM入門
nearme_tech
PRO
0
9
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
13
リファクタリングのための第一歩
nearme_tech
PRO
0
39
確率的プログラミング入門
nearme_tech
PRO
2
87
Observability and OpenTelemetry
nearme_tech
PRO
2
39
観察研究における因果推論
nearme_tech
PRO
1
120
React
nearme_tech
PRO
2
45
Architecture Decision Record (ADR)
nearme_tech
PRO
1
880
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
74
Other Decks in Science
See All in Science
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
PRO
0
280
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
140
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
210
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.3k
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.6k
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
190
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
150
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.2k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
110
Introduction to Image Processing: 2.Frequ
hachama
0
370
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
190
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Building an army of robots
kneath
302
45k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
The Language of Interfaces
destraynor
155
24k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
It's Worth the Effort
3n
183
28k
Faster Mobile Websites
deanohume
305
30k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Speed Design
sergeychernyshev
25
730
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Transcript
1 2024-11-15 第108回NearMe技術勉強会 Futo Ueno ガウス過程回帰とベイズ最適化
2 はじめに 参考図書:「ガウス過程と機械学習」 https://www.kspub.co.jp/book/detail/ 1529267.html
3 はじめに 図の出⼒などに使ったコード: https://colab.research.google.com/drive/1_1v2ZuANtvrgzOli6dnErZbms ASoU_rK?hl=ja#scrollTo=B4aPaxbC2Aoc
4 背景 ‧「ブラックボックス最適化⼿法」の⼀つであるベイズ最適化を タスクで使ったらかなり良かったので, 共有したい ‧ベイズ最適化のアルゴリズムではガウス過程回帰をうまく使っている ‧ガウス過程回帰⾃体もどこかに使えそう ‧ガウス過程回帰&ベイズ最適化の概要を説明する
5 回帰とは ⼊出⼒ペアのデータから未知の⼊出⼒関係を推測すること ex. 単回帰 cf. 過去の勉強会資料 https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono1-hui-gui-nig
uan-surufu-xi https://speakerdeck.com/nearme_tec h/ji-jie-xue-xi-woli-lun-karazhen-jian-n iqu-rizu-ndemitajian-sono2-xian-xing- hua-nitiao-zhan-siyou
6 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 → 実数が対応
7 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) ガウス分布 多変量ガウス分布 → 実数が対応
→ 有限次元のベクトルが対応
8 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
9 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
10 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
11 ガウス過程とは → 直感的には「無限次元」の正規分布 (= ガウス分布) →「無限次元」のベクトル (= 関数)が対応 ガウス分布
多変量ガウス分布 ガウス過程 → 実数が対応 → 有限次元のベクトルが対応
12 切り取る 「無限次元」をどう扱うか ‧ガウス過程は”関数 version”の正規分布だった → 「関数 f がガウス過程に従う」ことをどう定義すればよいか? ‧多変量ガウス分布の⼀部を切り取ってもやはりガウス分布に従うことに注⽬
→ 任意の(いくらでも⼤きな)個数の成分をfから切り取っても多変量ガウス になるような「仕組み」があればよさそう m n - m m n - m m n - m 第1~第m成分を切り取る
13 ガウス過程の定義 定義 直感的には, ‧μ(x) → 無限次元の平均ベクトル ‧k(x, y) →
無限次元×無限次元の共分散⾏列
14 ガウス過程の定義 定義 ‧適切に前処理できるなら, 実際に回帰するときにμ(x)まで考慮しなくてもよい ‧k(x, y) はカーネル関数と呼ばれている
15 カーネル関数の与える影響 ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる 😁
😭 異なるk(x, y)に対する実現値の⽐較
16 カーネル関数の例 ‧ガウスカーネル ‧指数カーネル ‧線形カーネル なめらか ギザギザ ← この「中間」もある
(Matérn カーネル) ← 重回帰に対応
17 カーネル関数の与える影響 (再掲) ‧カーネル関数k(x, y)は, f(x)とf(y)の相関を規定する → カーネル関数次第で, ガウス過程の実現値(= 関数)の性質が⼤きく変わる
😁 😭
18 ガウス過程回帰 ‧⼊出⼒のデータ: が与えられたとする (適切に前処理されているとする) ‧データにフィットする関数 f をexactに求めるのではなく, データ観測後の「事後的な f
の分布」を求める → ベイズ的 ↑よくわからないので とりあえずガウス過程でモデリング ⼊⼒ 出⼒ ↑データに適合するような関数が 出てくる確率が⾼くなっている(ことを期待) (未知)
19 ガウス過程回帰 ガウス過程の性質から であることはわかる → の分布もわかりそう ← ここでの出⼒について知りたいとする
20 条件付き多変量ガウス分布 定理
21 ガウス過程回帰
22 ガウス過程回帰 カーネル関数を変えると「パス(ガウス過程の実現値)の⾃由度」が変わる → 推定される「fの事後分布」も変わる γ (ハイパーパラメータ)の選び⽅にも依存す る
23 ガウス過程回帰の応⽤例① ‧時系列解析 ガウスカーネル ガウスカーネル + 線形カーネル → トレンドを考慮 カーネルの設定(
= 事前分布の設定) を通じて「主観」が反映される -- カーネル関数を組み合わせることで様々な予測が可能
24 ガウス過程回帰の応⽤例② ‧ベイズ最適化 -「ブラックボックス最適化⼿法」の⼀つ - ガウス過程回帰をうまく使うことで効率的に探索することができる ⼊⼒ 出⼒ ↑ f
の計算に時間がかかる場合, なるべく少ない評価回数で最適化したい
25 獲得関数 ‧f の計算が重いので, 代理となる関数(獲得関数)を⽤意する ‧獲得関数に求めること: - 計算が重くない (重要) -
f に近い (少なくとも既知の点とその近くで合っていてほしい) - 不確かさが反映されている(未探索の部分を過⼩評価しないでほしい) ‧ガウス過程回帰を使うと「関数 version」の信頼区間を出すことができる → 「上側100α%点を繋いだ関数」などが獲得関数として使われる -- 例えば, +2.576σ など (上側0.5%点)
26 ベイズ最適化のアルゴリズム
27 ベイズ最適化のアルゴリズム 今回は acquisition = +2.576σ としている ‧上げると反復が多くなるが局所解に陥りにくい ‧下げると反復が少なくて済むが局所解に陥りやすい
28 ベイズ最適化のアルゴリズム
29 ベイズ最適化のアルゴリズム
30 ベイズ最適化のアルゴリズム
31 ベイズ最適化のアルゴリズム
32 ベイズ最適化のアルゴリズム
33 ベイズ最適化のアルゴリズム
34 ベイズ最適化のアルゴリズム
35 ベイズ最適化のアルゴリズム
36 ベイズ最適化のアルゴリズム
37 ベイズ最適化のアルゴリズム
38 ベイズ最適化のアルゴリズム
39 ベイズ最適化のアルゴリズム 1. 初期値に対して f を評価 (重い) 2. 既知の {
(x, f(x)) } を使ってガウス過程回帰 3. ガウス過程回帰の結果から得られる獲得関数を最⼤化するx*を求める 4. x*においてfを評価 (重い) → (x*, f(x*))は既知となる 5. 2~4を繰り返して適当な停⽌条件を満たしたら終了
40 Reference ‧ 持橋⼤地, ⼤⽻成征 : 「ガウス過程と機械学習」. 講談社, 2019.
41 Thank you