Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet models for refraction through rough surfaces. In Proceedings of the 18th Eurographics conference on Rendering Techniques (EGSR'07), Jan Kautz and Sumanta Pattanaik (Eds.). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 195-206. DOI=http:// dx.doi.org/10.2312/EGWR/EGSR07/195-206 2007 Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent Burley, and Adam Martinez. 2012. Practical physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses (SIGGRAPH '12). ACM, New York, NY, USA, Article 10, 7 pages. DOI: https://doi.org/10.1145/2343483.2343493 σΟεχʔ͕GGXΛ͍ͬͯΔࣄΛެද 2012 2014 Unity͕ඪ४γΣʔμΛGGXʹมߋ IUUQTVOJUZEDPNKQVOJUZXIBUTOFXVOJUZ 2015
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of NIPS, pages 2672– 2680, 2014. papers.nips.cc/paper/5423- generativeadversarial-nets.pdf.
and Niloy J. Mitra. 2018. FrankenGAN: guided detail synthesis for building mass models using style-synchonized GANs. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 216, 14 pages. DOI: https://doi.org/10.1145/3272127.3275065 ೖྗ ग़ྗ http://geometry.cs.ucl.ac.uk/projects/2018/frankengan/
C' ࣅ͍ͯΔఔྑ͍ $͕"ͷॏཁͳಛʹ͍ؔͯ͠ΔͳΒ $ ; ˠ"ˠ$Ͱݩͷ$ʹΕΔഺ ΦʔτΤϯίʔμ $͕"ͷಛΛίϯτϩʔϧ͢Δ ύϥϝʔλʹͳΔ "͔Β$Λ෮ݩ X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
Riedmiller, Martin. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method. In: European Conference on Machine Learning. Springer, Berlin, Heidelberg, 2005. p. 317-328.
World's Best at Super Smash Bros. with Deep Reinforcement Learning. arXiv preprint arXiv:1702.06230, 2017. ਂQωοτϫʔΫΛ༻͍ͨ େཚಆεϚογϡϒϥβʔζDXͷAIͷ࡞ https://youtu.be/dXJUlqBsZtE ڧԽֶश ϑΝϧίϯ ϓϩήʔϚʔ ϑΝϧίϯ "*͕ϓϩͱઓͬͯউͬͨࣄΛใ͡Δهࣄ https://www.businessinsider.com/super-smash-bros- pro-slox-mafia-artificial-intelligence-2017-2
Daan Wierstra, Martin Riedmiller Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. Atari 2600ͷը໘Λೖྗͱͯ͠ దͳߦಈΛબ͢ΔڧԽֶश
Daan Wierstra, Martin Riedmiller Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. ը໘͔Β͙͢ʹ͖࣍͢ࣄ͕Θ͔ΔήʔϜͰ ڧԽֶशͷείΞਓؒͷείΞΛ͑Δ ظతͳઓུΛཁ͢ΔήʔϜͰਓ͕ؒѹউ͢Δ
and Sergey Levine. 2018. SFV: reinforcement learning of physical skills from videos. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 178, 14 pages. DOI: https://doi.org/10.1145/3272127.3275014
Sergey Levine. 2018. SFV: reinforcement learning of physical skills from videos. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 178, 14 pages. DOI: https://doi.org/10.1145/3272127.3275014 ө૾͔Β࢟Λਪఆ͠ ͓खຊͱͳΔಈ͖Λ࡞Δ ΩϟϥΫλʔ͕ཧతʹՄೳͳൣғͰ͓खຊʹ͍ۙಈ͖Λֶश͢Δ ཧγϛϡϨʔγϣϯԼͰ ಈ͘ΩϟϥΫλʔ͕ ֤ϑϨʔϜʹ͓͍ͯ ͓खຊʹ͍ۙϙʔζΛ͍ͯ͠Δఔ ߴ͍ใु
and Greg Turk. 2018. Learning to dress: synthesizing human dressing motion via deep reinforcement learning. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 179, 10 pages. DOI: https://doi.org/10.1145/3272127.3275048 ʹγϛϡϨʔγϣϯΛߦ͍͍ͨ ࣄલʹΩϟϓνϟͨ͠ಈ͖Ͱ ରͷΩϟϥΫλʔ ਖ਼͘͠ΛணΕͳ͍͔͠Εͳ͍ https://www.cc.gatech.edu/~aclegg3/projects/LearningToDress.html ڧԽֶशͰΩϟϥΫλʔʹ ࣗྗͰΛணΔํ๏Λֶशͯ͠Β͏
w3 rg (s) + w4 rt (s) + w5 rr (s) ΛணΔڧԽֶशͷใु rp (s) ਐḿใुକΛ௨աͨ͠಄ͷ͞ʹൺྫ͢Δใु rd (s) rg (s) rr (s) ͱΓ͋͑ͣକʹΛ௨ͦ͏ͱ͢ΔΑ͏ʹ༠ಋ มܗใु͕ҾͬுΒΕͯ৳ͼ͍ͯΔ΄Ͳݮগ͢Δใु Λഁ͘Α͏ͳಈ͖Λආ͚ΔΑ͏ʹ༠ಋ
w3 rg (s) + w4 rt (s) + w5 rr (s) ΛணΔڧԽֶशͷใु rp (s) ਐḿใुକΛ௨աͨ͠಄ͷ͞ʹൺྫ͢Δใु rd (s) มܗใु͕ҾͬுΒΕͯ৳ͼ͍ͯΔ΄Ͳݮগ͢Δใु rg (s) ଌใु͕ഽʹ৮͍ͯ͠Δׂ߹ʹൺྫ͢Δใु rr (s) ͱΓ͋͑ͣକʹΛ௨ͦ͏ͱ͢ΔΑ͏ʹ༠ಋ Λഁ͘Α͏ͳಈ͖Λආ͚ΔΑ͏ʹ༠ಋ Λʹ͚͍ͭͯΔঢ়ଶΛࢦ͢Α͏ʹ༠ಋ ΰʔϧใुΛணͨঢ়ଶʹࣅ͍ͯΔ΄Ͳ૿Ճ͢Δใु କ͔Β಄Λग़ͦ͏ͱͨ͠Γ͠ͳ͍Α͏ʹ༠ಋ ͷछྨʹΑͬͯͷׂ߹Λௐ w
Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. DOI: https://doi.org/10.1145/3072959.3073601 https://research.nvidia.com/publication/interactive-reconstruction-monte-carlo-image-sequences-using-recurrent-denoising