Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bedrock AgentをサポートしたPowertools for AWS Lambdaによ...
Search
fujioka-a
June 25, 2025
Technology
0
130
Bedrock AgentをサポートしたPowertools for AWS Lambdaによる開発の効率化・省力化
Media-JAWS x JAWS-UG千葉支部 #2 幕張よ我々は帰ってきた!で発表した資料です(一部編集してます)
fujioka-a
June 25, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
140
経験がないことを言い訳にしない、 AI時代の他領域への染み出し方
parayama0625
0
270
機械学習を「社会実装」するということ 2025年夏版 / Social Implementation of Machine Learning July 2025 Version
moepy_stats
1
1.5k
KCD Lima: eBee in Peru!
lizrice
0
110
クマ×共生 HACKATHON - 熊対策を『特別な行動」から「生活の一部」に -
pharaohkj
0
230
マルチモーダル基盤モデルに基づく動画と音の解析技術
lycorptech_jp
PRO
2
280
会社もクラウドも違うけど 通じたコスト削減テクニック/Cost optimization strategies effective regardless of company or cloud provider
aeonpeople
2
400
Recoil脱却の現状と挑戦
kirik
3
480
【CEDEC2025】現場を理解して実現!ゲーム開発を効率化するWebサービスの開発と、利用促進のための継続的な改善
cygames
PRO
0
420
モバイルゲームの開発を支える基盤の歩み ~再現性のある開発ラインを量産する秘訣~
qualiarts
0
760
地域コミュニティへの「感謝」と「恩返し」 / 20250726jawsug-tochigi
kasacchiful
0
110
Snowflake のアーキテクチャは本当に筋がよかったのか / Data Engineering Study #30
indigo13love
0
290
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
How STYLIGHT went responsive
nonsquared
100
5.7k
Unsuck your backbone
ammeep
671
58k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Side Projects
sachag
455
43k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Bash Introduction
62gerente
613
210k
Transcript
MEDIA-JAWS X JAWS-UG千葉支部#2 幕張よ我々は帰ってきた! 2025.6.25(火) Bedrock Agentをサポートした Powertools for AWS
Lambdaによる 開発の効率化・省力化
自己紹介 藤岡 敦史 前職:バックエンドエンジニア、 農業系や建設系のクライアントにて開発 現職:フォージビジョン所属、 インフラエンジニア、 フルスタックに多数のクライアントにて開発・構築 2025 All
AWS Certifications Engineer →ゴールドジャケット受け取れました!! 好きなAWSサービス Lambda
はじめに そもそも”Powertools”とは… ※もっと詳しく知りたい方は、ぜひ以下のAWS福井さんの資料を参照ください(個人的に神資料です) https://pages.awscloud.com/rs/112-TZM- 766/images/20221124_24th_ISV_DiveDeepSeminar_Lambda_Powertools.pdf Powertools • OSSライブラリ • ロギング、トレース、メトリクスなど、
ベストプラクティスの型・実装パターンがある程度 決まっている機能を手軽に導入できる →ボイラープレートを減らすことで、 開発速度やメンテナンス性を向上させられる • 以下の言語をサポート • Python • Java • TypeScript • .NET
従来のCore utilities • 以降の説明は、今回検証に使用したTypeScriptを前提に説明します • 以下がPowertoolsの主要機能(ユーティリティ)です ※言語によってユーティリティの充実度はマチマチです ユーティリティ 概要 トレース
X-rayと連携した処理のトレース ログ 構造化ロギング メトリクス カスタム名前空間を利用したメトリクス集計 Event Handler AppSync AppSync Eventからのパブリッシュ&サブスクライブ に対するイベントハンドリング ※他にも沢山ユーティリティはあるので、公式サイトを確認ください https://docs.powertools.aws.dev/lambda/typescript/latest/
最新のCore utilities • 今回新たに、Bedrock AgentからLambdaを呼び出しする際に必要とする、 Lambda側での決まった実装パターンがユーティリティ化された →自前実装せずPowertoolsを使用することで、実装が大きく効率化される! ユーティリティ 概要 トレース
X-rayと連携した処理のトレース ログ 構造化ロギング メトリクス カスタム名前空間を利用したメトリクス集計 Event Handler AppSync AppSync Eventからのパブリッシュ&サブスクライブ に対するイベントハンドリング Bedrock Agent Bedrock Agentからの呼び出し に対するイベントハンドリング ※2025.6.22時点で、Pythonと.NETはBedrock Agentとの連携が対応しているようです (Javaはまだ無いようです)
Event Handler(Bedrock Agent) とは • 今回の新機能は、Powertools公式に以下の概要図で説明されています。
Event Handler(Bedrock Agent) とは • 今回の新機能は、Powertools公式に以下の概要図で説明されています。 Bedrock AgentとのIN/OUT や、 tool
useのルーティング (適切なLambdaへの誘導)
とりあえず一回動かしてみよう • 検証のために、Bedrock Agent + Lambda + Powertoolsで、 Google Books
API を使った書籍推薦エージェントを作成しました • 全体として、以下のような流れで動きます
とりあえず一回動かしてみよう デモ
Lambda実装を確認しよう // importは割愛 const app = new BedrockAgentFunctionResolver({ logger });
// Bedrock Agent – Lambda間のリゾルバ // Toolsの定義(searchBooks) app.tool<{ keywords: string, author: string }>( async ({ keywords, author }, { event }) => { try { // Tool logic const books = await searchBooks(keywords, author, 10); return books.map(book => ({ ...book })); } catch (error) { logger.error('error search books', { error }); const {sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration} = event; return new BedrockFunctionResponse({ responseState: 'FAILURE', body: 'Error search books', sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration, }); } }, { // BedrockAgentFunctionResolverが、Tool useとして識別するメタデータ name: 'searchBooks', description: 'Search for books by author or keywords', } ); export const handler = async (event: unknown, context: Context) => { return app.resolve(event as BedrockAgentFunctionEvent, context); }; まずミニマム版から
Lambda実装を確認しよう // importは割愛 const app = new BedrockAgentFunctionResolver({ logger });
// Bedrock Agent – Lambda間のリゾルバ // Toolsの定義(searchBooks) app.tool<{ keywords: string, author: string }>( async ({ keywords, author }, { event }) => { try { // Tool logic const books = await searchBooks(keywords, author, 10); return books.map(book => ({ ...book })); } catch (error) { logger.error('error search books', { error }); const {sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration} = event; return new BedrockFunctionResponse({ responseState: 'FAILURE', body: 'Error search books', sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration, }); } }, { // BedrockAgentFunctionResolverが、Tool useとして識別するメタデータ name: 'searchBooks', description: 'Search for books by author or keywords', } ); export const handler = async (event: unknown, context: Context) => { return app.resolve(event as BedrockAgentFunctionEvent, context); }; まずミニマム版から ①中間のリゾルバを作成 ②Bedrock Agentからの入力をリゾルブ ③メタデータから一致するToolを特定(今回で言えば”searchBooks”) ④-1. リゾルバから受け渡されるパラメータを受け取って、処理実行 ④-2. Bedrock Agentへ、エラーをRaise
Powertoolsを使用しないと、以下が必要 (リゾルバが無いので、)Eventから1つ1つパラメータ取得するための実装 • アクショングループ • Tool名 などなど Bedrock AgentへRaiseするExceptionクラスなどを、 自前で作成・メンテする
そもそも、Bedrock Agentからのイベントが期待する形式なのか チェックしないといけない • Eventが期待する形式か • パラメータは適切か(バリデーション) Powertoolsを導入することで、 実装の削減のみ限らず、メンテナンス性や可読性も 向上することができる!
実際に完成したLambda(コアのLog、Trace、Metricsを含む) 前半 import type { Context } from 'aws-lambda'; import
{ BedrockAgentFunctionResolver, BedrockFunctionResponse } from '@aws-lambda-powertools/event-handler/bedrock-agent'; import type { BedrockAgentFunctionEvent } from '@aws-lambda-powertools/event-handler/types'; import { Metrics, MetricUnit } from '@aws-lambda-powertools/metrics'; import { Tracer } from '@aws-lambda-powertools/tracer'; import { searchBooks } from './bookModules.js'; import { logger } from './logger.js'; const tracer = new Tracer({serviceName: 'searchBooksAgent'}); const metrics = new Metrics({namespace: 'searchBooks‘, serviceName: 'searchBooksAgent'}); const app = new BedrockAgentFunctionResolver({ logger }); // Bedrock Agent – Lambda間のリゾルバ app.tool<{ keywords: string, author: string }>( async ({ keywords, author }, { event }) => { // 以降の全ロギングに対して、以下パラメータを表示 logger.appendKeys({ keywords, author, tool: 'searchBooks' }); logger.info('searchBooks called'); try { const books = await searchBooks(keywords, author, 10); metrics.addMetric('searchBooksSucceeded', MetricUnit.Count, 1); return books.map(book => ({ ...book })); } catch (error) { トレースとメトリクスを宣言 構造化ログへのパラメータ付与 ToolUse確認のためのメトリクス集計
実際に完成したLambda(コアのLog、Trace、Metricsを含む) 後半 } catch (error) { logger.error('error search books', {
error }); metrics.addMetric('searchBooksFailed', MetricUnit.Count, 1); const {sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration} = event; return new BedrockFunctionResponse({ responseState: 'FAILURE', body: 'Error search books', sessionAttributes, promptSessionAttributes, knowledgeBasesConfiguration, }); } }, { name: 'searchBooks', description: 'Search for books by author or keywords', } ); export const handler = async (event: unknown, context: Context) => { logger.logEventIfEnabled(event); logger.setCorrelationId((event as BedrockAgentFunctionEvent).sessionId); logger.appendKeys({ requestId: context.awsRequestId }); return app.resolve(event as BedrockAgentFunctionEvent, context); }; Toolがエラーした場合にメトリクス へインクリメント (アラートと連携などできる) 複数サービス間のトレースをしやす いように、CorrelationIdを ロガーに設定 任意のキーをロガーに設定 (今回はrequestId)
LOG (Log group) • 構造的なログが得られる • 指定したキー(Ex. correlation_id, requestId)や、 パラメータ(tool,
keywords, author(今回は指定してないので無し))を自動的に出力 { "level": "DEBUG", "message": "Searching books", "timestamp": "2025-06-23T11:56:24.726Z", "service": "book-search-agent", "sampling_rate": 0, "xray_trace_id": "1-685940e8-694b07215e21870b3ea377b4", "correlation_id": "228342203262808", "requestId": "a6bc05c2-20e9-419d-ba75-f5497abcaa0b", "keywords": "[AWS 生成AI, 初心者向け, 機械学習入門]", "tool": "searchBooks", "maxResults": 10 }
Metrics (カスタム名前空間へのPUT) • Tool実行のカウントや、処理内部の部分的な実行時間(Duration)などを メトリクス化することができる • アラームやダッシュボードなどと連携することで、エージェントの運用に役立つ
TRACE (AWS X-ray) • トレースは重要。有効化しておきましょう。 • 複数のToolを構築している場合に、どのToolが呼ばれているか追跡しやすい • AgentとTool、外部APIなどとの問題切り分けに強力
まとめ • PowertoolsでBedrock Agentがサポートされるようになった • 導入することで、大幅な実装手間を削減することができ、 開発生産性に加えて、メンテナンス性や可読性を向上させることができる • さらに、従来のユーティリティ(トレース、ログ、メトリクスなど)と組み合わせることで、 Tool
の開発や運用を快適に行うことができる 生成AIエージェントの開発・運用を加速させることができる!! Powertoolsを積極活用しましょう!!
ご清聴ありがとうございました Thank you for your listening.