Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tennis form visualization
Search
Hampen
February 16, 2020
Science
1
2.1k
Tennis form visualization
Tennis form visualized by SMPLify-X and 3 dimension pose estimation model.
Hampen
February 16, 2020
Tweet
Share
More Decks by Hampen
See All by Hampen
OOP for ML
hampen2929
3
2.6k
Feature vector calculation of tennis swing using Gaussian process regression and dissimilarity calculation by DTW distance
hampen2929
0
5.4k
Tennis swing recognition based on pose estimation and LightGBM
hampen2929
0
4.7k
Other Decks in Science
See All in Science
CV_3_Keypoints
hachama
0
220
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
120
データマイニング - ノードの中心性
trycycle
PRO
0
300
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
110
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
110
2025-06-11-ai_belgium
sofievl
1
190
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.4k
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.3k
Lean4による汎化誤差評価の形式化
milano0017
1
370
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
210
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
19k
Transport information Geometry: Current and Future II
lwc2017
0
220
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
680
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Producing Creativity
orderedlist
PRO
348
40k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
RailsConf 2023
tenderlove
30
1.3k
Agile that works and the tools we love
rasmusluckow
331
21k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
What's in a price? How to price your products and services
michaelherold
246
12k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
Transcript
1 テニスのフォームの可視化 勉強会︓ Sports Analyst Meetup #6 ⽇時︓ 2020年2⽉16⽇(⽇) 会場︓
NTTコミュニケーションズ 様 発表者︓ 持丸 裕⽮
2 持丸 裕⽮ 【経歴】 2015年 東北⼤学⼯学部卒業 2016年 Fraunhofer IISB (ドイツ留学)
2018年 東北⼤学⼤学院⼯学研究科卒業 2018年 IT系企業のDataScience部署配属 【テニス】 宮城県⼤会・準優勝(シングルス) 東北地区⼤会・準優勝(ダブルス) 全⽇本学⽣テニス選⼿権⼤会出場(ダブルス) 【やってること】 仕事︓動画の分析 趣味︓機械学習×テニス ⾃⼰紹介 はんぺん (hampen2929) データサイエンすたんぷ 検索
3 機械学習×テニス https://www.youtube.com/watch?v=IxIixqI2_o0
4 機械学習×テニス https://www.youtube.com/watch?v=-VH8ksbdVVY
5 発表の流れ はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
6 モチベーション 綺麗なフォームを⾝につけたい︕ 綺麗なフォームって何だ︖ 今どんなフォームで打っている︖ フォーム確認のための可視化の⽅法を検討
7 動画から⾃分のフォームの可視化を⾏い、それが実⽤に耐えるかを判断する。 ⽬的 選んだ⼿法を⽤いて実際のデータで検証 課題と改善案の提⽰ どのような⼿法で可視化すれば良いかの検討と選択
8 はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
9 n SMPLify-X Ø 単⼀の単眼画像から⼈間のポーズ、⼿のポーズ、表情の3Dモデルを計算して、3Dの⼈体モデルを ⽣成する 3次元の⼈体⽣成モデル https://www.youtube.com/watch?time_continue=84&v=XyXIEmapWkw&feature=emb_title
10 Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB 3次元の姿勢推定
https://arxiv.org/pdf/1712.03453.pdf
11 はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
12 サーブを撮影した動画を⽤いた。 データの準備
13 定量的な評価は難しいので、SMPLで⽣成された3D⼈体モデルに関して以下の観点で定性的 な評価を⾏った。 評価観点 元の動画との⽐較 3次元空間での確認 元の動画と⽐較しての再現性 画像からは本来取得し得ない3次元の情報を推定しており、実 際に3次元空間でどのような挙動をしているか確認
14 それっぽい。 元の動画との⽐較
15 奥⾏き⽅向の情報に関して前後のつながりが乏しい。奥⾏き⽅向でブレが⼤きい。 3次元空間での確認
16 著者による動画からの3次元の⼈体モデル⽣成(5:15~) https://www.youtube.com/watch?v=XyXIEmapWkw&t=85s
17 ⼊⼒は2次元の姿勢情報であり、3次元の情報はそこから推定されたものでしかなく、また姿勢の 前後のつながりは加味されていないため⽣成されたモデルがぷるぷるしている。 原因と解決案 関節の位置を時系列情報として、 前後の関係を加味したモデル⽣成 を⾏ったほうがよい。
18 はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
19 動画内での姿勢の前後の動きのつながりを滑らかにするために、以下の更新式を加えた。結果と して動きは滑らかになった。 3次元の姿勢推定と可視化(横) = 1 − k × −
1 + k × (t) ︓ 姿勢情報 t: 時間 k︓ 0~1
20 ボーン情報だとフォームの確認という観点では使えそうにない。 3次元の姿勢推定と可視化(後ろ)
21 はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
22 3次元の姿勢情報を⽤いて、且つ直前の姿勢情報を加味して姿勢情報を更新し、それを⼊⼒ に3次元の⼈体モデルを⽣成すれば滑らかで且つフォーム確認に使える。 考察 デメリット メリット SMPLify-X 3次元の姿勢推定 3次元の⼈体モデルな ので、フォームの確認
に使いやすい ⼊⼒が2次元でかつ 姿勢の情報がフレーム に閉じているので、前 後のつながりがない 前後の姿勢情報を加 味して更新が⾏え、滑 らかにできる ボーン情報だとフォーム の確認の観点だと使 いにくい
23 直前の姿勢の情報を⽤いて姿勢情報の更新を⾏い、それを⼊⼒に3次元の⼈体モデルを⽣成 することで、フォーム確認に使えるものができる(はず)。 フォーム可視化のための改善案 従来 改善案 直前のフレーム 現在のフレーム 更新式 2次元
2次元 3次元 3次元 ︓ ︓
24 はじめに SMPLify-X 3次元の姿勢推定 ⽤いた⼿法 まとめ 考察と改善案
25 動画から⾃分のフォームの可視化を⾏い、それが実⽤に耐えるかを判断する。 →現状実⽤に耐えそうにはないが、可能性はある。 まとめ 選んだ⼿法を⽤いて実際の データで検証 課題と改善案の提⽰ SMPLify-Xでは元動画との⽐較を⾏い、3次元空間での挙動 も確認した。 3次元の姿勢推定を⾏い、直前の姿勢情報を⽤いて値の更新
を⾏い、それを⼊⼒に3次元の⼈体モデルを⽣成することで、 フォーム確認に使えるものができる(はず)。 どのような⼿法で可視化す れば良いかの検討と選択 SMPLify-Xと3次元の姿勢推定を選択した。
26 ご静聴ありがとうございました︕