Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimization as a Model for Few-Shot Learning -...
Search
Hokuto Kagaya
June 16, 2017
Science
2
1.4k
Optimization as a Model for Few-Shot Learning - ICLR 2017 reading seminar
Hokuto Kagaya
June 16, 2017
Tweet
Share
More Decks by Hokuto Kagaya
See All by Hokuto Kagaya
LINE Bot ✕ Chainer - low-carb recipe bot -
hokkun
0
1.2k
Other Decks in Science
See All in Science
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
22k
HDC tutorial
michielstock
0
270
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
590
データマイニング - グラフデータと経路
trycycle
PRO
1
260
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
データベース03: 関係データモデル
trycycle
PRO
1
320
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
460
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
150
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
Featured
See All Featured
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
580
From π to Pie charts
rasagy
0
91
Mind Mapping
helmedeiros
PRO
0
39
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
The Spectacular Lies of Maps
axbom
PRO
1
400
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
38
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Paper Plane
katiecoart
PRO
0
44k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
190
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
Paper Plane (Part 1)
katiecoart
PRO
0
1.9k
Transcript
!%F/" 4IJCVZB)JLBSJF )PLVUP ,BHBZB !@IPLLVO@ 0QUJNJ[BUJPOBTB.PEFM GPS'FX4IPU-FBSOJOH
5-%3 • 1VSQPTF • #FUUFSJOGFSFODFGPSGFXTIPUPOFTIPUMFBSOJOH QSPCMFN • .FUIPE • .FUBMFBSOJOHCBTFEPO-45.PGEFFQOFVSBM
OFUXPSL • 3FTVMU • $PNQFUJUJWFXJUIEFFQNFUSJDMFBSOJOHUFDIOJRVFT
#BDLHSPVOE • 8IZEFFQMFBSOJOHTVDDFFEFE • NBDIJOFQPXFS • BNPVOUPGEBUB • -BSHF%BUBTFU
• *NBHF/FU *NBHF • .JDSPTPGU$0$0$BQUJPOT *NBHF$BQUJPO • :PV5VCF. 7JEFP • 8JLJ5FYU 5FYU
#BDLHSPVOE • )PXFWFS *ONBOZGJFMET UPDPMMFDUBMBSHF BNPVOUPGUSBJOJOHTBNQMFTJT • EJGGJDVMU •
&Y'JOFHSBJOFESFDPHOJUJPO DBS CJSE GPPE • UJNFDPOTVNJOH • TDSBQJOH DSBXMJOH BOOPUBUJOHʜ • "DUVBMMZIVNBOCFJOHTDBOHFOFSBMJ[FVTJOH GFXTBNQMFTPGUBSHFUT
1SPCMFN1VSQPTF • )PXDBOXFBDRVJSFHFOFSBMJ[FENPEFMVTJOH GFXTBNQMFTBOEBTFUOVNCFSPGVQEBUFT • &YJTUFEHSBEJFOUCBTFEUSBJOJOHBMHPSJUIN 4(% "%".
"EB(MBE EPFTOPUGJUUIFQSPCMFNXJUIB TFUOVNCFSPGQBSBNFUFSVQEBUFT • *OPUIFSTJNQMFXPSET BVUIPSTXBOUUPGJOE HPPEJOJUJBMQBSBNFUFSTPG// • DG SFWJFXDPNNFOUTJUJTNVDICFUUFSUPCFBCMFUP GJOEBSDIJUFDUVSBMQBSBNFUFSTPG//
1SPCMFN1VSQPTF • )PX • .FUBMFBSOJOH • -FBSOJOHUPMFBSO5SBJOMFBSOFSJUTFMG • "WBSJFUZPGNFUBMFBSOJOH
• 5SBOTGFSMFBSOJOH • 6TFUIFFYQFSJFODFTPGEJGGFSFOUEPNBJO • 1PQVMBSJOUIFGJFMEPGJNBHFDMBTTJGJDBUJPO FTQFDJBMMZGPS GJOFHSBJOFEWJTVBMDMBTTJGJDBUJPO • &OTFNCMFDMBTTJGJFS • DPNCJOFNVMUJQMFDMBTTJGJFS 5IJTBSUJDMFJTWFSZHPPEUPVOEFSTUBOENFUBMFBSOJOH IUUQIUUQXXXTDIPMBSQFEJBPSHBSUJDMF.FUBMFBSOJOH
1SPQPTFENFUIPE • -45.CBTFENFUBMFBSOJOH
1SFSFRVJTJUFT • 8IBUJT-45. • -POHUJNF4IPSU5FSN.FNPSZ • ࣌ܥྻΛѻ͍͍ͨɺͰޡ͕ࠩൃࢄফࣦͪ͠Ό͏ • աڈͷσʔλͷॏΈΛ̍ʹͯ͠Εͳ͍Α͏ʹ্ͨ͠ Ͱɺબతʹೖྗग़ྗΛߦ͏Α͏ʹͨ͠
b • ͔͠͠ٸܹͳঢ়گͷมԽʢʁʣʹରԠͰ͖ͳ͔ͬͨͷ Ͱɺ٫ήʔτΛઃஔ͢Δ͜ͱͰબతʹաڈͷσʔ λͷهԱΛফڈͰ͖ΔΑ͏ʹͨ͠ ` • ࢀߟʢຊޠʣ • IUUQRJJUBDPNU@4JHOVMMJUFNTCCFCGEC
%BUB4FQBSBUJPO • NFUBUSBJOEBUBTFU • NFUBUFTUEBUBTFU • NFUBTBNQMF UBSHFU USBJOJOH
TBNQMFT UBSHFU UFTUJOH TBNQMFT POFNFUBTBNQMF BLBFQJTPEF
1SPQPTFE.FUIPE " = "$% + )*+, ℒ" " =
" ⨀"$% + " ⨀̅" XIFSF " = (6 7 ? + b9 ) " = ; 7 ? + b< XIFSF ? DVSSFOUHSBEJFOUT DVSSFOUMPTT QSFWJPVT QSFWJPVTJUTFMG , /PSNBM4(% .FUBQIPS OPUDPOTUBOU UP FTDBQFGSPNCBE MPDBMPQUJNB
1SPQPTFE.FUIPE ←meta learner‘s iteration ←learner‘s iteration (meta) loss
value is computed by final state of LSTM (= parameters of target model) and "?@"’s data and labels.
1SPQPTFE.FUIPE • 'SPNBVUIPS`TTMJEF
1SPQPTFE.FUIPE • 8IBUXJMMCFJNQSPWFEHSBEVBMMZ • 'JSTU-45.QBSBNFUFS BLBNFUBMFBSOFS QBSBNFUFST • UIBUJT
zIPXTIPVMEXFVQEBUFUBSHFUNPEFMT z • 4FDPOE-45.TUBUFT PVUQVUT • 'JOBMA JTTIBSFEBNPOHFBDICBUDI TPMFBSOJOHQSPDFFET SBQJEMZUIBOLTGPSHPPEJOJUJBMJ[BUJPO
0UIFS5PQJDT • DPPSEJOBUFXJTF-45. • 1SFQSPDFTTJOHUP-45.JOQVUT • BCPVUCPUIUPQJDT TFF<"OESZDIPXJD[ /*14> QSFQSPDFTTJOHJTJOBQQFOEJY
• BEKVTUUIFTDBMJOHPGHSBEJFOUTBOEMPTTFT • TFQBSBUFJOGPPGNBHOJUVEFBOETJHO • #BUDIOPSNBMJ[BUJPO • BWPJEzEBUBTFUz FQJTPEF MFWFMMFBLBHFPG JOGPSNBUJPO • 3FMBUFEXPSLNFUSJDMFBSOJOH • FY4JBNFTFOFUXPSL
&WBMVBUJPO.FUIPE • #BTFMJOFOFBSFTUOFJHICPS • NFUBUSBJOUSBJOOFVSBMOFUXPSLVTJOHBMMTBNQMF • NFUBUFTUUSBJOJOHTBNQMFΛ//ʹͿͪ͜Μͩ݁Ռͱ UFTUJOHTBNQMFͷͦΕΛൺֱ • #BTFMJOFGJOFUVOF
• NFUBUSBJOʹՃ͑ͯɺ NFUBWBMJEBUJPO EBUBTFU Λ IZQFS QBSBNFUFSͷ୳ࡧʹ͍ɺ ͷ OFUXPSLΛ GJOFUVOF ͢Δ • #BTFMJOF.BUDIJOHOFUXPSL • ڑֶशͷ405"
&WBMVBUJPO3FTVMU
7JTVBMJ[BUJPOBOE*OTJHIU
7JTVBMJ[BUJPOBOE*OTJHIU • JOQVUHBUFT • EJGGFSFOUBNPOHEBUBTFUT • NFUBMFBSOFSJTO`UTJNQMZMFBSOJOHBGJYFEPQUJNJ[BUJPO TUSBUFHZ • EJGGFSFOUBNPOHUBTLT
• NFUBMFBSOFSIBTVTFEEJGGFSFOUXBZTUPTPMWFFBDI TFUUJOH • GPSHFUHBUFT • TJNQMFEFDBZ • ݁ہ΄ͱΜͲ DPOTUBOU
$PODMVTJPO • 'PVOE-45.CBTFENPEFMUPMFBSOBMFBSOFS XIJDIJTJOTQJSFECZBNFUBQIPSCFUXFFO 4(%VQEBUFTBOE-45. • 5SBJONFUBMFBSOFSUPEJTDPWFS • (PPEJOJUJBMJ[BUJPOPGMFBSOFS
• (PPENFDIBOJTNGPSVQEBUJOHMFBSOFS`T QBSBNFUFST • DPNQFUJUJWFFYQFSJNFOUBMSFTVMUXJUI405" NFUSJDMFBSOJOHNFUIPET
'VUVSFXPSL • GFXTBNQMFTMPUTPGDMBTTFT • NPSFDIBMMFOHJOHTDFOBSJPT • GSPNSFWJFXDPNNFOU • JUJTNVDICFUUFSUPCFBCMFUPGJOEBSDIJUFDUVSBM QBSBNFUFSTPG//
ॴײ • USBOTGFSMFBSOJOHʹ͓͚ΔʮผυϝΠϯͷܦݧ Λ׆͔͢ʯͱ͍͏࡞ۀΛʮ࣌ܥྻͷֶशʯతʹଊ ͑ͯ -45.Ϟσϧͱֶͯ͠शͨ͠ɺͱ͍͏ͷ ࣗવʹࢥ͑ͨ • ͢Ͱʹ͋ͬͨൃʁ࣌ؒͳؔ͘࿈ݚڀ·ͰಡΈࠐΊ ͣɻɻ
• SFWJFXDPNNFOUʹ͋ͬͨɺߏͷ࠷దԽ·Ͱ Ͱ͖Δͱ͘͢͝Αͦ͞͏ͩͱࢥͬͨ • γϯϓϧͳϑΟϧλΛͨ͘͞ΜॏͶΔͱ͍͍ͱ͍͏ ͋Δ͕ɻɻ • ֶ෦࣌ DVEBDPOWOFU Λͬͯͨ͘͞ΜϋΠύύϥ ϝʔλΛࢼͨۤ͠࿑͕ોͬͨ
ଟΘ͔ͬͯͳ͍͜ͱ • ݁ہɺ͜ͷจͰॳΊͯΘ͔ͬͨͷͲ͜ʁ -45.Λ MFBSOJOHUPMFBSOʹͬͨͷଟॳ Ίͯ͡Όͳ͍ʁ • ྫ͑ "OESZDIPXJD[ `
ͰɺޯΛೖྗʹͯ͠ UBSHFUMFBSOFSͷ QBSBNFUFSVQEBUFT Λग़ྗ͢Δ -45.Λֶश • ύϥϝλͦͷͷΛग़ྗͯ͠Δͱ͜Ζʁ