Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimization as a Model for Few-Shot Learning -...
Search
Hokuto Kagaya
June 16, 2017
Science
2
1.4k
Optimization as a Model for Few-Shot Learning - ICLR 2017 reading seminar
Hokuto Kagaya
June 16, 2017
Tweet
Share
More Decks by Hokuto Kagaya
See All by Hokuto Kagaya
LINE Bot ✕ Chainer - low-carb recipe bot -
hokkun
0
1.2k
Other Decks in Science
See All in Science
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
130
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
420
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
CV_5_3dVision
hachama
0
170
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
600
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
690
研究って何だっけ / What is Research?
ks91
PRO
2
150
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
Featured
See All Featured
It's Worth the Effort
3n
187
29k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
The Invisible Side of Design
smashingmag
302
51k
Typedesign – Prime Four
hannesfritz
42
2.9k
Building an army of robots
kneath
306
46k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
How GitHub (no longer) Works
holman
316
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
YesSQL, Process and Tooling at Scale
rocio
174
15k
We Have a Design System, Now What?
morganepeng
54
7.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
!%F/" 4IJCVZB)JLBSJF )PLVUP ,BHBZB !@IPLLVO@ 0QUJNJ[BUJPOBTB.PEFM GPS'FX4IPU-FBSOJOH
5-%3 • 1VSQPTF • #FUUFSJOGFSFODFGPSGFXTIPUPOFTIPUMFBSOJOH QSPCMFN • .FUIPE • .FUBMFBSOJOHCBTFEPO-45.PGEFFQOFVSBM
OFUXPSL • 3FTVMU • $PNQFUJUJWFXJUIEFFQNFUSJDMFBSOJOHUFDIOJRVFT
#BDLHSPVOE • 8IZEFFQMFBSOJOHTVDDFFEFE • NBDIJOFQPXFS • BNPVOUPGEBUB • -BSHF%BUBTFU
• *NBHF/FU *NBHF • .JDSPTPGU$0$0$BQUJPOT *NBHF$BQUJPO • :PV5VCF. 7JEFP • 8JLJ5FYU 5FYU
#BDLHSPVOE • )PXFWFS *ONBOZGJFMET UPDPMMFDUBMBSHF BNPVOUPGUSBJOJOHTBNQMFTJT • EJGGJDVMU •
&Y'JOFHSBJOFESFDPHOJUJPO DBS CJSE GPPE • UJNFDPOTVNJOH • TDSBQJOH DSBXMJOH BOOPUBUJOHʜ • "DUVBMMZIVNBOCFJOHTDBOHFOFSBMJ[FVTJOH GFXTBNQMFTPGUBSHFUT
1SPCMFN1VSQPTF • )PXDBOXFBDRVJSFHFOFSBMJ[FENPEFMVTJOH GFXTBNQMFTBOEBTFUOVNCFSPGVQEBUFT • &YJTUFEHSBEJFOUCBTFEUSBJOJOHBMHPSJUIN 4(% "%".
"EB(MBE EPFTOPUGJUUIFQSPCMFNXJUIB TFUOVNCFSPGQBSBNFUFSVQEBUFT • *OPUIFSTJNQMFXPSET BVUIPSTXBOUUPGJOE HPPEJOJUJBMQBSBNFUFSTPG// • DG SFWJFXDPNNFOUTJUJTNVDICFUUFSUPCFBCMFUP GJOEBSDIJUFDUVSBMQBSBNFUFSTPG//
1SPCMFN1VSQPTF • )PX • .FUBMFBSOJOH • -FBSOJOHUPMFBSO5SBJOMFBSOFSJUTFMG • "WBSJFUZPGNFUBMFBSOJOH
• 5SBOTGFSMFBSOJOH • 6TFUIFFYQFSJFODFTPGEJGGFSFOUEPNBJO • 1PQVMBSJOUIFGJFMEPGJNBHFDMBTTJGJDBUJPO FTQFDJBMMZGPS GJOFHSBJOFEWJTVBMDMBTTJGJDBUJPO • &OTFNCMFDMBTTJGJFS • DPNCJOFNVMUJQMFDMBTTJGJFS 5IJTBSUJDMFJTWFSZHPPEUPVOEFSTUBOENFUBMFBSOJOH IUUQIUUQXXXTDIPMBSQFEJBPSHBSUJDMF.FUBMFBSOJOH
1SPQPTFENFUIPE • -45.CBTFENFUBMFBSOJOH
1SFSFRVJTJUFT • 8IBUJT-45. • -POHUJNF4IPSU5FSN.FNPSZ • ࣌ܥྻΛѻ͍͍ͨɺͰޡ͕ࠩൃࢄফࣦͪ͠Ό͏ • աڈͷσʔλͷॏΈΛ̍ʹͯ͠Εͳ͍Α͏ʹ্ͨ͠ Ͱɺબతʹೖྗग़ྗΛߦ͏Α͏ʹͨ͠
b • ͔͠͠ٸܹͳঢ়گͷมԽʢʁʣʹରԠͰ͖ͳ͔ͬͨͷ Ͱɺ٫ήʔτΛઃஔ͢Δ͜ͱͰબతʹաڈͷσʔ λͷهԱΛফڈͰ͖ΔΑ͏ʹͨ͠ ` • ࢀߟʢຊޠʣ • IUUQRJJUBDPNU@4JHOVMMJUFNTCCFCGEC
%BUB4FQBSBUJPO • NFUBUSBJOEBUBTFU • NFUBUFTUEBUBTFU • NFUBTBNQMF UBSHFU USBJOJOH
TBNQMFT UBSHFU UFTUJOH TBNQMFT POFNFUBTBNQMF BLBFQJTPEF
1SPQPTFE.FUIPE " = "$% + )*+, ℒ" " =
" ⨀"$% + " ⨀̅" XIFSF " = (6 7 ? + b9 ) " = ; 7 ? + b< XIFSF ? DVSSFOUHSBEJFOUT DVSSFOUMPTT QSFWJPVT QSFWJPVTJUTFMG , /PSNBM4(% .FUBQIPS OPUDPOTUBOU UP FTDBQFGSPNCBE MPDBMPQUJNB
1SPQPTFE.FUIPE ←meta learner‘s iteration ←learner‘s iteration (meta) loss
value is computed by final state of LSTM (= parameters of target model) and "?@"’s data and labels.
1SPQPTFE.FUIPE • 'SPNBVUIPS`TTMJEF
1SPQPTFE.FUIPE • 8IBUXJMMCFJNQSPWFEHSBEVBMMZ • 'JSTU-45.QBSBNFUFS BLBNFUBMFBSOFS QBSBNFUFST • UIBUJT
zIPXTIPVMEXFVQEBUFUBSHFUNPEFMT z • 4FDPOE-45.TUBUFT PVUQVUT • 'JOBMA JTTIBSFEBNPOHFBDICBUDI TPMFBSOJOHQSPDFFET SBQJEMZUIBOLTGPSHPPEJOJUJBMJ[BUJPO
0UIFS5PQJDT • DPPSEJOBUFXJTF-45. • 1SFQSPDFTTJOHUP-45.JOQVUT • BCPVUCPUIUPQJDT TFF<"OESZDIPXJD[ /*14> QSFQSPDFTTJOHJTJOBQQFOEJY
• BEKVTUUIFTDBMJOHPGHSBEJFOUTBOEMPTTFT • TFQBSBUFJOGPPGNBHOJUVEFBOETJHO • #BUDIOPSNBMJ[BUJPO • BWPJEzEBUBTFUz FQJTPEF MFWFMMFBLBHFPG JOGPSNBUJPO • 3FMBUFEXPSLNFUSJDMFBSOJOH • FY4JBNFTFOFUXPSL
&WBMVBUJPO.FUIPE • #BTFMJOFOFBSFTUOFJHICPS • NFUBUSBJOUSBJOOFVSBMOFUXPSLVTJOHBMMTBNQMF • NFUBUFTUUSBJOJOHTBNQMFΛ//ʹͿͪ͜Μͩ݁Ռͱ UFTUJOHTBNQMFͷͦΕΛൺֱ • #BTFMJOFGJOFUVOF
• NFUBUSBJOʹՃ͑ͯɺ NFUBWBMJEBUJPO EBUBTFU Λ IZQFS QBSBNFUFSͷ୳ࡧʹ͍ɺ ͷ OFUXPSLΛ GJOFUVOF ͢Δ • #BTFMJOF.BUDIJOHOFUXPSL • ڑֶशͷ405"
&WBMVBUJPO3FTVMU
7JTVBMJ[BUJPOBOE*OTJHIU
7JTVBMJ[BUJPOBOE*OTJHIU • JOQVUHBUFT • EJGGFSFOUBNPOHEBUBTFUT • NFUBMFBSOFSJTO`UTJNQMZMFBSOJOHBGJYFEPQUJNJ[BUJPO TUSBUFHZ • EJGGFSFOUBNPOHUBTLT
• NFUBMFBSOFSIBTVTFEEJGGFSFOUXBZTUPTPMWFFBDI TFUUJOH • GPSHFUHBUFT • TJNQMFEFDBZ • ݁ہ΄ͱΜͲ DPOTUBOU
$PODMVTJPO • 'PVOE-45.CBTFENPEFMUPMFBSOBMFBSOFS XIJDIJTJOTQJSFECZBNFUBQIPSCFUXFFO 4(%VQEBUFTBOE-45. • 5SBJONFUBMFBSOFSUPEJTDPWFS • (PPEJOJUJBMJ[BUJPOPGMFBSOFS
• (PPENFDIBOJTNGPSVQEBUJOHMFBSOFS`T QBSBNFUFST • DPNQFUJUJWFFYQFSJNFOUBMSFTVMUXJUI405" NFUSJDMFBSOJOHNFUIPET
'VUVSFXPSL • GFXTBNQMFTMPUTPGDMBTTFT • NPSFDIBMMFOHJOHTDFOBSJPT • GSPNSFWJFXDPNNFOU • JUJTNVDICFUUFSUPCFBCMFUPGJOEBSDIJUFDUVSBM QBSBNFUFSTPG//
ॴײ • USBOTGFSMFBSOJOHʹ͓͚ΔʮผυϝΠϯͷܦݧ Λ׆͔͢ʯͱ͍͏࡞ۀΛʮ࣌ܥྻͷֶशʯతʹଊ ͑ͯ -45.Ϟσϧͱֶͯ͠शͨ͠ɺͱ͍͏ͷ ࣗવʹࢥ͑ͨ • ͢Ͱʹ͋ͬͨൃʁ࣌ؒͳؔ͘࿈ݚڀ·ͰಡΈࠐΊ ͣɻɻ
• SFWJFXDPNNFOUʹ͋ͬͨɺߏͷ࠷దԽ·Ͱ Ͱ͖Δͱ͘͢͝Αͦ͞͏ͩͱࢥͬͨ • γϯϓϧͳϑΟϧλΛͨ͘͞ΜॏͶΔͱ͍͍ͱ͍͏ ͋Δ͕ɻɻ • ֶ෦࣌ DVEBDPOWOFU Λͬͯͨ͘͞ΜϋΠύύϥ ϝʔλΛࢼͨۤ͠࿑͕ોͬͨ
ଟΘ͔ͬͯͳ͍͜ͱ • ݁ہɺ͜ͷจͰॳΊͯΘ͔ͬͨͷͲ͜ʁ -45.Λ MFBSOJOHUPMFBSOʹͬͨͷଟॳ Ίͯ͡Όͳ͍ʁ • ྫ͑ "OESZDIPXJD[ `
ͰɺޯΛೖྗʹͯ͠ UBSHFUMFBSOFSͷ QBSBNFUFSVQEBUFT Λग़ྗ͢Δ -45.Λֶश • ύϥϝλͦͷͷΛग़ྗͯ͠Δͱ͜Ζʁ