Upgrade to Pro — share decks privately, control downloads, hide ads and more …

DeepCluster 論文の紹介

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Yuki Ishikawa Yuki Ishikawa
August 08, 2018

DeepCluster 論文の紹介

Facebook AI Research による論文「Deep Clustering
 for Unsupervised Learning
 of Visual Features」の解説資料
https://arxiv.org/abs/1807.05520

Avatar for Yuki Ishikawa

Yuki Ishikawa

August 08, 2018
Tweet

More Decks by Yuki Ishikawa

Other Decks in Science

Transcript

  1. ࠓճͷ࿦จɿ
 Deep Clustering for Unsupervised Learning
 of Visual Features •

    https://arxiv.org/abs/1807.05520 • Facebook AI Research • Accepted at ECCV 2018
  2. ֓ཁ • CNN Ͱը૾ͷΫϥελϦϯάΛ͢Δख๏ • CNN ͷग़ྗΛ k-means ͰΫϥελϦϯάͨ݁͠ՌΛ
 “ِϥϕϧ”

    ͱͯ͠ѻ͍ɺωοτϫʔΫͷॏΈΛߋ৽͢Δ • ͱͯ΋ྑ͍ੑೳ͕ग़ͨ • Pascal VOC ʹΑΔධՁͰଞͷΞϧΰϦζϜΛ௒͑Δੑೳ • ؤ݈ੑ͕͋Δ • σʔληοτΛม͑ͯ΋େৎ෉ (ImageNet → YFCC100) • ωοτϫʔΫߏ଄Λม͑ͯ΋େৎ෉ (AlexNet → VGG16) • k-means Ҏ֎ͷΫϥελϦϯάΞϧΰϦζϜͰ΋େৎ෉
  3. ڭࢣ (͋Γ|ͳ͠) ֶश • ڭࢣ͋Γֶश (Supervised Learning) • ֶशσʔλʹڭࢣϥϕϧ͕෇͍͍ͯΔ •

    ෼ྨ΍ճؼͳͲ • ڭࢣͳֶ͠श (Unsupervised Learning) • ֶशσʔλʹڭࢣϥϕϧ͕෇͍͍ͯͳ͍ • ΫϥελϦϯά • AutoEncoder
  4. epoch ͷྲྀΕ 3. k-means ͰΫϥελϦϯά 1. ೖྗΛ CNN ͰϑΥϫʔυ 4.

    ΫϥελϦϯά݁ՌΛ
 “ِϥϕϧ” ͱͯ͠ޡࠩΛܭࢉ 5. ωοτϫʔΫͷॏΈΛߋ৽ 2. CNN ͷग़ྗ݁ՌΛ PCA Ͱѹॖ
  5. ผͷݚڀ [26] • ύϥϝʔλ͕ϥϯμϜͳ AlexNet ʹ
 ImageNet σʔληοτͰ෼ྨΛߦͬͨ • ग़ྗ΋ϥϯμϜʹͳΔͱ͢Ε͹ɺ


    (ImageNet ͸1000Ϋϥε෼ྨͳͷͰ)
 ਫ਼౓ͷظ଴஋͸ 0.1 %ͱͳΔ • ͔࣮͠͠ࡍʹ͸ɺظ଴஋Λང͔ʹ௒͑Δ
 12 %ͷਫ਼౓Λग़ͨ͠
  6. ࣮૷ͷৄࡉ (1/2) • CNN ʹ͸ඪ४తͳ AlexNet Λ༻͍ͨ • Local Response

    Normalization ૚͸
 Batch Normalization ૚ʹೖΕସ͑ͨ • ৭৘ใΛͦͷ··ѻ͏ͷ͕೉͍͠ • Sobel filter (※ ྠֲநग़) ʹجͮ͘ઢܗม׵ʹΑͬͯ
 ৭Λ࡟আ͠ίϯτϥετΛڧௐ͍ͯ͠Δ • ImageNet ͷը૾͸ Data Augmentation ͯ͠ೖྗͨ͠ • mini batch size ͸ 256 ʹͨ͠
  7. ࣮૷ͷৄࡉ (2/2) • 500 epoch Λֶश͢Δͷʹ P100 GPU Λ࢖ͬͯ
 12

    ೔͔͔ͬͨ • ࣮ߦ࣌ؒશମͷ 1/3 ͸ k-means ͷॲཧ࣌ؒ • ΫϥελϦϯά͢ΔલʹશσʔλΛ Forward ͢Δඞཁ͕
 ͋ΔͷͰͲ͏ͯ͠΋͕͔͔࣌ؒΔ
  8. ิ଍ɿਖ਼نԽ૬ޓ৘ใྔ (NMI) • Normalized Mutual Information • ͋ΔΫϥελϦϯά݁Ռ A ͱ


    ผͷΫϥελϦϯά݁Ռ B ͕
 ͲΕ͚ͩࣅ௨͍ͬͯΔ͔ΛදݱͰ͖Δ
  9. Ϋϥελͷ҆ఆੑ • ͋Δը૾͕ɺ࣍ͷ epoch Ͱ΋ಉ͡Ϋϥελʹ
 ׂΓ౰ͯΒΕΔׂ߹ (= ҆ఆੑ) • epoch

    ͕ਐΉʹͭΕ
 ҆ఆੑ͕૿͢ • 0.8 ҎԼͰ๞࿨͢Δ • ͦΕҎ্ͷֶश͸
 ҙຯ͕ͳ͍
  10. Ϋϥελ਺ʹΑΔੑೳͷҧ͍ • mAP ͱ͍͏ํ๏ (ʁ) Ͱ෼ྨੑೳΛܭଌͨ͠ • k = 10,000

    Ͱ࠷΋ੑೳ͕ྑ͔ͬͨ • ImageNet Ͱ͋Ε͹ k = 1,000 ͕
 ྑ͍ͷͰ͸ͳ͍͔ͱߟ͕͕͑ͪͩɺ
 ա৒ͳηάϝϯςʔγϣϯͷ
 ΄͏͕͍͍݁ՌΛग़ͨ͠
  11. CNN ͷ֤૚͝ͱͷߟ࡯ • Լͷը૾͸ɺ֤૚Ͱ࠷΋൓Ԡͷྑ͔ͬͨը૾ TOP 9 • ਂ͍૚ʹͳΔ΄Ͳେ͖ͳύλʔϯΛೝ͍ࣝͯ͠Δ (༧૝௨Γ) •

    ࠷ޙͷ૚ (conv5) ͸ɺલͷ૚·ͰͰೝࣝͨ͜͠ͱΛ
 ࠶౓ೝࣝ͠௚͍ͯ͠ΔΑ͏ʹ΋ݟ͑Δ • (AlexNet ʹ͓͍ͯ) ࠷ޙͷ૚ (conv5) ͸ଞͷ૚ͱ͸
 ಛ௃͕ҟͳΔͱ͍͏ผͷݚڀ݁Ռ [43] Λཪ෇͚͍ͯΔ
  12. ֤૚ͷ෼ྨੑೳ (3/3) • DeepCluster ͸ߴ͍ϨΠϠͰͷੑೳ͕ྑ͍ • conv3 ͷੑೳ͕ͱͯ΋ྑ͍ • ͳΜͱ

    conv5 ΑΓ΋ྑ͍ • ҰํͰ conv1 ͷੑೳ͕શ͘ྑ͘ͳ͍ • DeepCluster Ͱ͸ɺconv3-conv4 Ͱ ImageNet ͷ
 ϥϕϧʹ૬౰͢Δ΋ͷΛೝ͍ࣝͯ͠ΔͷͰ͸ͳ͍͔
  13. Pascal VOC ʹΑΔධՁ (1/3) • Pascal VOC: ෼ྨɾ෺ମݕग़ɾϥϕϧ෇͚ Λߦ͏ίϯϖ •

    DeepCluster Λ࢖ͬͯ໰୊Λղ͘͜ͱͰੑೳΛධՁ͢Δ • ෺ମݕग़ͷ࣮૷ʹ͸ Fast R-CNN Λ༻͍ͨ
  14. Pascal VOC ʹΑΔධՁ (3/3) • ෼ྨɾ෺ମݕग़ɾϥϕϧ෇͚ ͢΂ͯʹ͓͍ͯੑೳ͕ྑ͍ • ڵຯਂ͍఺ͱͯ͠ɺfine-tuned (?)

    ͳϥϯμϜωοτϫʔΫ͸ ͦΕͳΓͷਫ਼౓Λग़͕͢ɺશ݁߹૚ 6-8 ͷΈΛֶशͨ͠৔߹ ͷੑೳ͸͔ͳΓ௿͘ͳΔ • ͜ΕΒͷλεΫ͸ fine-tuning Ͱ͖ͳ͍৔߹Ͱݱ࣮ͷ
 ΞϓϦέʔγϣϯͱۙ͘ͳΔ • ͦͷ৔߹ɺ࠷৽ͷख๏ͱͷࠩ͸ߋʹେ͖͘ͳΔͩΖ͏ (෼ྨͰ࠷େ 9%) ( ˘ω˘) .oO ( ͪΐͬͱԿݴͬͯΔ͔Θ͔ΒΜ͔ͬͨ )
  15. ֓ཁ (࠶ܝ) • CNN Ͱը૾ͷΫϥελϦϯάΛ͢Δख๏ • CNN ͷग़ྗΛ k-means ͰΫϥελϦϯάͨ݁͠ՌΛ


    “ِϥϕϧ” ͱͯ͠ѻ͍ɺωοτϫʔΫͷॏΈΛߋ৽͢Δ • ͱͯ΋ྑ͍ੑೳ͕ग़ͨ • Pascal VOC ʹΑΔධՁͰଞͷΞϧΰϦζϜΛ௒͑Δੑೳ • ؤ݈ੑ͕͋Δ • σʔληοτΛม͑ͯ΋େৎ෉ (ImageNet → YFCC100) • ωοτϫʔΫߏ଄Λม͑ͯ΋େৎ෉ (AlexNet → VGG16) • k-means Ҏ֎ͷΫϥελϦϯάΞϧΰϦζϜͰ΋େৎ෉