. a priori ar- ticulation of preference . . weighted sum . weighted global criterion . Chankong, Haimes 83 . Zeleny 82 . Yu, Leit- mann 74 . lexico- graphic . Osyczka 84 . Waltz 67 . weighted min-max . Miettin- en 99 . exponen-tial weighted . Athan, Pa- palam- bros 96 . weighted product . Gerasimov, Repko 78 . Bridg- man 22 . goal pro- gramming . Charnes et al. 67/55 . Ijiri 65 . Charnes, Cooper 61 . bounded objective function . Hwang, Md. Masud 79 . Haimes et al. 71 . physical pro- gramming . Chen et al. 00 . Messac 96 . a posteriori articula- tion of preference . . physical pro- gramming . Messac, Mattson 02 . Martinez et al. 01 . NBI . Das 99 . Das, Dennis 98 . NC . Messac et al. 03 . no artic- ulation of preference . . global criterion . TOPSIS . Hwang et al. 93 . Yoon 80 . object- ive sum . Chankong, Haimes 83 . Zeleny 82 . Yu, Leit- mann 74 . min-max . Li 92 . Osyczka 78 . Yu 73 . Nash arbitration . Straffin 93 . Davis 83 . object- ive product . Cheng, Li 96 . Rao . Rao 87 . Rao and Freiheit 91 . multi- objective . . simulated annealing . . SMOSA . Suppap- itnarm et al 00 . UMOSA . Ulunga et al 98,99 . PSA . Czyzak et al 96-98 . WMOSA . Susman 02-04 . PDMOSA . Susman 03-05 . particle swarm . . Aggrega- tion . Parso- poulos et al . Baum- gartner et al . Lexico- graphic . Hu and Eberhart . Sub- Popula-tion . Parso- poulos et al . Chow and Tsui . Comb-ined . Mah- fouf et al. . Xiao-hua et al. . Other . Li . Zhang et al. . Pareto- based . Moore and Chap- man . Ray and Liew . Field- send and Singh . ... . evolution- ary algorithms . . ranking . Gold- berg 89 . Fonseca, Fleming 93 . Srinivas, Deb 95 . Cheng, Li 95 . VEGA . Schaf-fer 85 . Pareto-set filter . Cheng, Li 97 . tourna-ment selection . Horn et al. 94 . niche techniques . fitness sharing . additional techniques . eucli- dean distance . Osyc- zka, Kundu 96 . weigh- ted sum . Ishi- buchi, Murata 96 . zero- one- weigh- ted sum . Kurs- awe 91 . constr. preemp. goal prog. . Gen, Liu 95 . Pareto fitness func. . Schau- mann et al. 98 . • only one Pareto solution can be found in one run • preference-based (specify preference for trade-off solution) • not all can be found in non-convex MOOPS • all algorithms require a prior knowledge (weights, ε, targets) . • multiple Pareto solutions can be found in one run • a posteriori articulation of preference • “easier”: diversity in decision and objective space (non-linear mapping) 9 / 37