Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
輪講資料:KGDM: A Diffusion Model to Capture Multipl...
Search
Ryuki Ida
May 24, 2025
0
8
輪講資料:KGDM: A Diffusion Model to Capture Multiple Relation Semantics for Knowledge Graph Embedding
5分で論文紹介
研究室内の輪講で使用した資料です.
Ryuki Ida
May 24, 2025
Tweet
Share
More Decks by Ryuki Ida
See All by Ryuki Ida
最先端NLP勉強会2025: Disentangling Memory and Reasoning Ability in Large Language Models
iryuki1110
0
5
ACL読み会2024@名大:SCIMON : Scientific Inspiration Machines Optimized for Novelty
iryuki1110
0
53
最先端NLP勉強会2024: TTM-RE Memory-Augmented Document-Level Relation Extraction
iryuki1110
0
140
Featured
See All Featured
Faster Mobile Websites
deanohume
309
31k
Optimizing for Happiness
mojombo
379
70k
GitHub's CSS Performance
jonrohan
1031
460k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Fireside Chat
paigeccino
39
3.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
The Invisible Side of Design
smashingmag
301
51k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
The Language of Interfaces
destraynor
158
25k
The Cult of Friendly URLs
andyhume
79
6.5k
A better future with KSS
kneath
239
17k
Transcript
※ 図表は論文より引用 @AAAI 2024 読み手:井田 龍希(D2)
/9 全体像:拡散モデルを用いたKGE • テイル予測問題を条件付きエンティティ生成問題とみなす • DDPMを用いてターゲットエンティティの分布を推定 • ヘッドエンティティと関係を条件として生成過程を制御 2024/4/14 t
h r 2
/9 特定関係タイプの複数の意味を捉える • 知識の曖昧性により複数の意味を持つ関係タイプが存在する • 例:“LocationContains” • 国 - 都市:
(US, LocationContains, New York) • 国 - 大学: (US, LocationContains, Yale University) • 決定論的な予測をする既存手法では複数の意味を捉えられない ➔ KGDMの目標:関係タイプの複数の意味を捉えるKGEの実現 2024/4/14 3
/9 全体像:拡散モデルを用いたKGE • テイル予測問題を条件付きエンティティ生成問題とみなす • DDPMを用いてターゲットエンティティの分布を推定 • ヘッドエンティティと関係を条件として生成過程を制御 2024/4/14 t
h r 4
/9 全体像:拡散モデルを用いたKGE • テイル予測問題を条件付きエンティティ生成問題とみなす • DDPMを用いてターゲットエンティティの分布を推定 • ヘッドエンティティと関係を条件として生成過程を制御 2024/4/14 t
h r 5 1. デノイザーの設計 と 2. 学習・推論の流れ さえ分かれば後は一般的な拡散モデル
/9 条件付きエンティティデノイザーの設計 • Diffusion Transformerを基にグラフに特化した軽量なモデル • Scoring Module:関係パターンを捉える条件埋め込みの計算 • CEDenoiser
Block:単純なMLPによる軽量なノイズ予測 2024/4/14 6
/9 学習・推論の流れ • 学習:負例サンプリングを用いた条件付きノイズ予測の最適化 • 推論:ガウシアンノイズから段階的な条件付きデノイジング 2024/4/14 7
/9 実験結果と評価 • 複数のベンチマークデータで 最先端の性能を達成 • 特にFB15k-237で大幅に向上 • FB15k-237は関係タイプが多い 2024/4/14
8
/9 事例研究 • 事例:(ロードランニング,オリンピック競技開催国,?) • KGDM:条件付きデノイジングにより多様な候補を表現可能 ➔ 評価時にはせずに,解析のために実施? (上手くできたら面白い,画像生成の多様性の話とかと関連?) 2024/4/14
9