Upgrade to Pro — share decks privately, control downloads, hide ads and more …

粘性Fornberg-Whitham方程式の解の高次漸近形

 粘性Fornberg-Whitham方程式の解の高次漸近形

「第17回数学総合若手研究集会 〜数学の交叉点〜」で話しました。
https://www.math.sci.hokudai.ac.jp/~wakate/mcyr/2021/ja/index.html

以下の論文の内容です。
https://doi.org/10.1016/j.na.2020.112200

Kenta Itasaka

March 06, 2021
Tweet

Other Decks in Science

Transcript

  1. ಋೖ ೪ੑ Fornberg-Whitham ํఔࣜ      ut

    + βuux + R Be−b|x−ξ|uξ(ξ, t)dξ = µuxx, x ∈ R, t > 0, u(x, 0) = u0(x), x ∈ R. (VFW) ͜͜Ͱ, β ̸= 0, B, b, µ > 0 ͱ͢Δ. ࢄҳ, ෼ࢄ, Ҡྲྀͷ 3 ͭͷޮՌΛߟྀͨ͠ਫ໘೾ͷϞσϧํఔࣜ. ඇہॴ෼ࢄ߲ R Be−b|x−ξ|uξ(ξ, t)dξ ʹಛ௃. ໨త   ࣌ؒແݶେʹ͓͚Δղͷߴ࣍઴ۙܗΛٻΊΔ: ▷ u(x, t) ∼ A1 (x, t) + A2 (x, t) + A3 (x, t), t → ∞. ඇہॴ෼ࢄ߲͕઴ۙܗʹٴ΅͢ӨڹΛௐ΂Δ.   ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 2 / 18
  2. Fornberg-Whitham ํఔࣜ Fornberg-Whitham ํఔࣜ      ut

    + uux + R Be−b|x−ξ|uξ(ξ, t)dξ = 0, x ∈ R, t > 0, u(x, 0) = u0(x), x ∈ R. (FW) ͜͜Ͱ, B, b > 0 ͱ͢Δ. (FW) ͸ਫ໘೾ʹ͓͚Δࡅ೾ݱ৅Λهड़͢ΔϞσϧํఔࣜͱͯ͠, Whitham(1967), Whitham & Fornberg (1978) ʹΑͬͯߟҊ͞Εͨ. ࡅ೾ͷ਺ֶతఆٛ sup t∈[0,T0) ∥u(t)∥L∞ < ∞ ͔ͭ lim sup t↑T0 ∥ux(t)∥L∞ = ∞, (0 < ∃T0 < ∞). ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 3 / 18
  3. Fornberg-Whitham ํఔࣜ (FW) ͷࡅ೾৚݅ Constantin-Escher (1998), Ma-Liu-Qu (2016), I. (preprint)

    ਺஋ܭࢉʹΑΔݚڀ Tanaka (2013), Hörmann-Okamoto (2019) ໰୊   u0, B, b ⇒ େҬղ? ࡅ೾ղ?   ਺஋ܭࢉʹΑΔ༧૝   બͼํʹΑͬͯ͸, େҬղʹͳΔ.   G(u0) = (େҬղ), B(u0) = (ࡅ೾ղ) ˒େҬղͷଘࡏΛอূ͢Δ਺ֶతͳ݁Ռ͸ݱࡏͷͱ͜Ζ஌ΒΕ͍ͯͳ͍. ⇒ (VFW) ͷղੳΛ௨ͯ͠, ඇہॴ෼ࢄ߲ʹؔ͢Δ৘ใΛಘ͍ͨ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 4 / 18
  4. ४උ ut + uux + R Be−b|x−ξ|uξ(ξ, t)dξ = µuxx,

    u(x, 0) = u0(x). (VFW) (VFW) Ͱ͸೪ੑ߲ µuxx ͷޮՌ ⇒ ࣌ؒେҬతͳڍಈͷղੳ͕Մೳ. େҬద੾ੑͱݮਰධՁ s ≥ 1 ͱ͠, ∥u0∥L1 + ∥u0∥Hs ͸े෼খ͍͞ͱ͢Δ. ͜ͷͱ͖, (VFW) ͸ҰҙͳେҬղ u(x, t) ∈ C0([0, ∞); Hs) Λ࣋ͭ. ͞Βʹ, ҎԼͷݮਰධՁ͕੒Γཱͭ: ∥∂l x u(·, t)∥Lp ≤ C(1 + t)−1 2 + 1 2p − l 2 , t ≥ 0. ͜͜Ͱ, 2 ≤ p ≤ ∞, l ͸ 0 ≤ l ≤ s − 1 Λຬͨ͢੔਺Ͱ͋Δ. ˒೤֩ͱಉ͡ݮਰϨʔτͱͳΔ. ⇒ ۭؒඍ෼ʹΑͬͯݮਰ͕଎͘ͳΔ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 5 / 18
  5. ඇہॴ෼ࢄ߲ͷ෼ղ R Be−b|x−ξ|uξ(ξ, t)dξ = F−1 i2Bbξ b2 + ξ2

    ˆ u(ξ) (x) = 2Bb(b2 − ∂2 x )−1ux = 2B b ∂xu + 2B b3 ∂3 x u + 2B b3 (b2 − ∂2 x )−1∂5 x u. ͜ΕΑΓ, (VFW) ͸ҎԼͷ௨Γॻ͖௚ͤΔ: ut + 1 ࣍ͷҠྲྀ߲ 2B b ∂xu + βuux + 3 ࣍ͷ෼ࢄ߲ 2B b3 ∂3 x u + 5 ࣍ͷ෼ࢄ߲ 2B b3 (b2 − ∂2 x )−1∂5 x u = µuxx. ߴ࣍ͷۭؒඍ෼ͷӨڹ   ˒ۭؒඍ෼ʹ൐͍, ࣌ؒݮਰ͕଎͘ͳΔ. ⇒ ௿࣍ͷ઴ۙڍಈʹ͸, ߴ࣍ͷۭؒඍ෼ͷޮՌ͸ݱΕͳ͍ͱ༧૝.   ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 6 / 18
  6. KdV-Burgers ํఔࣜ 5 ࣍ͷ෼ࢄ߲Λແࢹ: KdV-Burgers ํఔࣜ   ut +

    αux + βuux + γuxxx = µuxx. (KdVB)   Karch (1999), Kaikina-Ruiz-Paredes (2005), Fukuda (2019) ∥u0∥L1 1 + ∥u0∥H3 ͕े෼খ =⇒ ∥u(·, t) − χα(·, t)∥L∞ ≤ C(1 + t)−1 log(1 + t), t ≥ 0. ͜͜Ͱ, χα(x, t) ͸ඇઢܗࢄҳ೾Ͱ͋Γ, ҎԼͷ Burgers ํఔࣜͷղ: χt + αχx + βχχx = µχxx, R χ(x, t)dx = R u0(x)dx. ˒ (KdVB) ͷղͷୈ 1 ࣍઴ۙܗͰ͸, 3 ࣍ͷ෼ࢄ߲ͷޮՌ͸ݱΕͳ͍. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 7 / 18
  7. KdV-Burgers ํఔࣜ KdV-Burgers ํఔࣜͷղͷୈ 2 ࣍઴ۙܗ Fukuda (2019) ∥u0∥L1 1

    + ∥u0∥H3 ͕े෼খ =⇒ ∥u(·, t) − χα(·, t) − Vα,γ(·, t)∥L∞ ≤ C(1 + t)−1, t ≥ 1. ͜͜Ͱ, Vα,γ(x, t) := −κdV∗ x − α(1 + t) √ 1 + t (1 + t)−1 log(1 + t), V∗(x) := 1 √ 4πµ d dx (η∗(x)e−x2 4µ ), η∗(x) := exp β 2µ x −∞ χ∗(y)dy , d := R (η∗(y))−1(χ∗(y))3dy, κ := β2γ 8µ2 . ˒ (KdVB) ͷղͷୈ 2 ࣍઴ۙܗͰ͸, 3 ࣍ͷ෼ࢄ߲ͷޮՌ͕ݱΕΔ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 8 / 18
  8. ओ݁Ռ ओ݁Ռ ୈ 1 ࣍઴ۙܗ ⇒ (VFW) ͱ (KdVB) ͰಉҰ.

    ୈ 2 ࣍઴ۙܗ ⇒ (VFW) ͱ (KdVB) ͰಉҰ. ୈ 3 ࣍઴ۙܗ ⇒ (VFW) ͱ (KdVB) Ͱࠩҟ. Ҏޙ, α = 2B b , γ = 2B b3 ͱ͠, χ = χα, V = Vα,γ ͱ͢Δ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 9 / 18
  9. ୈ 1 ࣍઴ۙܗ ut + αux + βuux + γuxxx

    + 2B b3 (b2 − ∂2 x )−1∂5 x u = µuxx. (VFW) (VFW) ͷղͷୈ 1 ࣍઴ۙܗ (KdVB) ͷ݁ՌͰ 3 ࣍ͷ෼ࢄ߲ͷޮՌ͕ݱΕ͍ͯͳ͍. ⇒ ΑΓݮਰͷ଎͍ 5 ࣍ͷ෼ࢄ߲ͷޮՌ΋ݱΕͳ͍ͱ༧૝Ͱ͖Δ. Theorem 1 (Fukuda-I. 2021) s ≥ 1 ͱ͢Δ. u0 ∈ L1 1 (R) ∩ Hs(R) Ͱ ∥u0∥L1 + ∥u0∥Hs ͸े෼খ͍͞ͱ ͢Δ. ͜ͷͱ͖, ೚ҙͷ ε > 0 ʹରͯ͠, ࣍ͷධՁ͕੒ཱ͢Δ: ∥∂l x (u(·, t) − χ(·, t))∥Lp ≤ C(1 + t)−1+ε+ 1 2p − l 2 , t ≥ 0. ͜͜Ͱ, 2 ≤ p ≤ ∞, l ͸ 0 ≤ l ≤ s − 1 Λຬͨ͢੔਺Ͱ͋Δ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 10 / 18
  10. ୈ 2 ࣍઴ۙܗ u(x, t) − χ(x, t) ͷදݱ ut

    + αux + βuux + γuxxx + 2B b3 (b2 − ∂2 x )−1∂5 x u = µuxx, χt + αχx + βχχx = µχxx. ψ(x, t) := u(x, t) − χ(x, t) ͸ҎԼͷํఔࣜʹै͏: ψt + αψx + (βχψ)x − µψxx = −γuxxx − β 2 ψ2 x − 2B b3 (b2 − ∂2 x )−1∂5 x u. ΑΓҰൠʹ, ҎԼͷํఔࣜͷղͷެࣜΛߟ͑Δ: zt + αzx + (βχz)x − µzxx = ∂xλ(x, t), z(x, 0) = z0(x). ͨͩ͠, z0(x), λ(x, t) ͸ۭؒԕํͰݮਰ͢Δ׈Β͔ͳؔ਺ͱ͢Δ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 11 / 18
  11. ୈ 2 ࣍઴ۙܗ Kato-Ueda (2017) ۩ମతʹॻ͚Δ U[h](x, t, τ) ͕͋ͬͯ,

    ղ z(x, t) ͸࣍Ͱ༩͑ΒΕΔ: z(x, t) = U[z0](x, t, 0) + t 0 U[∂xλ(τ)](x, t, τ)dτ, x ∈ R, t > 0. ˞ Hopf-Cole ม׵ͷٞ࿦ΛԠ༻͢Δ͜ͱͰಘΒΕΔ. σϡΞϝϧ߲ͷݮਰධՁ ͋Δ a ≥ 1 ʹର͠, ∥∂j x λ(·, t)∥Lp ≤ C(1 + t)−a 2 + 1 2p − j 2 ͕੒Γཱͭͱ͢Δ. ͜ͷͱ͖, ҎԼ͕੒ཱ͢Δ: ∂l x t 0 U[∂xλ(τ)](·, t, τ)dτ Lp ≤          (1 + t)−a−1 2 + 1 2p − l 2 , 1 ≤ a < 3, (1 + t)−1+ 1 2p − l 2 log(1 + t), a = 3, (1 + t)−1+ 1 2p − l 2 , a > 3. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 12 / 18
  12. ୈ 2 ࣍઴ۙܗ ψ(x, t) = ((KdVB) ͱಉ͡) + 2B

    b3 t 0 U[(b2 − ∂2 x )−1∂5 x u(τ)](x, t, τ)dτ. ∥∂j x (b2 − ∂2 x )−1∂4 x u(·, t)∥Lp ≤ C(1 + t)−5 2 + 1 2p − j 2 Ͱ͋Δ͔Β, ∂l x t 0 U[∂x(b2 − ∂2 x )−1∂5 x u(τ)](·, t, τ)dτ Lp ≤ C(1 + t)−1+ 1 2p − l 2 . (KdVB) ͷղͷୈ 2 ࣍઴ۙܗͷධՁʹ͓͍ͯ, ∂l x (uK(·, t) − χ(·, t) − V (·, t)) Lp ≤ C(1 + t)−1+ 1 2p − l 2 . Theorem 2 (Fukuda-I. 2021) s ≥ 2 ͱ͢Δ. u0 ∈ L1 1 (R) ∩ Hs(R) Ͱ ∥u0∥L1 + ∥u0∥Hs ͕े෼খ =⇒ ∥∂l x (u(·, t) − χ(·, t) − V (·, t))∥Lp ≤ C(1 + t)−1+ 1 2p − l 2 , t ≥ 0. ͜͜Ͱ, 2 ≤ p ≤ ∞, l ͸ 0 ≤ l ≤ s − 2 Λຬͨ͢੔਺Ͱ͋Δ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 13 / 18
  13. ୈ 3 ࣍઴ۙܗ 5 ࣍ͷ෼ࢄ߲ͷӨڹ ∂l x t 0 U[∂x(b2

    − ∂2 x )−1∂5 x u(τ)](·, t, τ)dτ Lp ≤ C(1 + t)−1+ 1 2p − l 2 . Ͱ͋ͬͨͨΊ, o((1 + t)−1) ͷΦʔμʔͰ͸͜ͷ߲ΛແࢹͰ͖ͳ͍. ͢ͳΘͪ, ୈ 3 ࣍઴ۙܗʹ͸ 5 ࣍ͷ෼ࢄ߲ͷޮՌ͕ݱΕΔͱ༧૝Ͱ͖Δ. Theorem 3 (Fukuda-I. 2021) s ≥ 3 ͱ͢Δ. u0 ∈ L1 1 (R) ∩ Hs(R) ͔ͭ z0 ∈ L1 1 (R) Ͱ ∥u0∥L1 + ∥u0∥Hs ͸े෼খ͍͞ͱ͢Δ. ͜ͷͱ͖, ҎԼ͕੒ཱ͢Δ: lim t→∞ (1 + t)1− 1 2p + l 2 ∥∂l x (u(·, t) − χ(·, t) − V (·, t) − Q(·, t))∥Lp = 0. ͜͜Ͱ, 2 ≤ p ≤ ∞, l ͸ 0 ≤ l ≤ s − 3 Λຬͨ͢੔਺Ͱ͋Δ. ˞ୈ 3 ࣍઴ۙܗ Q(x, t) ͷఆٛ͸࣍εϥΠυҎ߱Ͱ༩͑Δ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 14 / 18
  14. ୈ 3 ࣍઴ۙܗ Q(x, t) ͸, ҎԼͷ W(x, t) ͱ

    Ψ(x, t) ͷ࿨ͱͯ͠ఆٛ͞ΕΔ: Q(x, t) := W(x, t) + Ψ(x, t). ·ͣ, Ψ(x, t) ΛҎԼͰఆٛ͢Δ: Ψ(x, t) := Ψ∗ x − α(1 + t) √ 1 + t (1 + t)−1. ͜͜Ͱ, Ψ∗(x) := d dx η∗(x) 1 0 (G(1 − τ) ∗ F(τ))(x)dτ , F(x, τ) := F∗ x √ τ τ−3 2 , F∗(x) := 2B b3 η∗(x)−1χ′′ ∗ (x) − κd √ 4πµ e−x2 4µ . ˒ Ψ(x, t) ͸, 5 ࣍ͷ෼ࢄ߲ͷޮՌΛؚ·ͣ, 3 ࣍ͷ෼ࢄ߲Ͱܾఆ͞ΕΔ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 15 / 18
  15. ୈ 3 ࣍઴ۙܗ ࣍ʹ, W(x, t) ΛҎԼͰఆٛ͢Δ: W(x, t) :=

    θV∗ x − α(1 + t) √ 1 + t (1 + t)−1. ͜͜Ͱ, θ := R z0(x)dx + ∞ 0 R ρ(x, t)dxdt, z0(x) := η(x, 0)−1 x −∞ (u0(y) − χ(y, 0))dy, ρ(x, t) := −η(x, t)−1 β 2 (u − χ)2 + 2B b3 ∂2 x (u − χ) + 2B b3 (b2 − ∂2 x )−1∂4 x u (x, t). ˒ W(x, t) ͸, 5 ࣍ͷ෼ࢄ߲ͷޮՌΛؚΉ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 16 / 18
  16. ୈ 3 ࣍઴ۙܗ (KdVB) ͱͷൺֱ ಉ͡ख๏Ͱ, (KdVB) ͷղͷୈ 3 ࣍઴ۙܗ΋ಋग़Ͱ͖Δ.

    Ψ(x, t) ͸, 3 ࣍ͷ෼ࢄ߲ͷΈͰܾఆ͞ΕΔͨΊ, ྆ऀ͸Ұக͢Δ. W(x, t) ʹ͓͍ͯ, ࠩҟ͕ݱΕΔ. (KdVB) ͷ৔߹ θK := R z0(x)dx + ∞ 0 R ρK(x, t)dxdt, ρK(x, t) := −η(x, t)−1 β 2 (uK − χ)2 + γ∂2 x (uK − χ) (x, t). ⇒ ඇہॴ෼ࢄ߲ͷޮՌ͕ݱΕͳ͍. (VFW) ͱ (KdVB) ͷ઴ۙܗͷൺֱ ୈ 1 ࣍઴ۙܗͱୈ 2 ࣍઴ۙܗ͸྆ऀͰҰக͢Δ͕, ୈ 3 ࣍઴ۙܗͰ྆ऀʹ ࠩҟ͕ݱΕΔ. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 17 / 18
  17. ·ͱΊ ut + uux + R Be−b|x−ξ|uξ(ξ, t)dξ = µuxx,

    u(x, 0) = u0(x). (VFW) ࣌ؒແݶେʹ͓͚Δղͷߴ࣍઴ۙܗΛಋग़ͨ͠: u(x, t) ∼ χ(x, t) + V (x, t) + Q(x, t), t → ∞. ୈ 1 ࣍઴ۙܗ͸ (VFW) ͱ (KdVB) ͰҰகͨ͠: ∥∂l x (u(·, t) − χ(·, t))∥Lp ≤ C(1 + t)−1+ε+ 1 2p − l 2 . ୈ 2 ࣍઴ۙܗ͸ (VFW) ͱ (KdVB) ͰҰகͨ͠: ∥∂l x (u(·, t) − χ(·, t) − V (·, t))∥Lp ≤ C(1 + t)−1+ 1 2p − l 2 . ୈ 3 ࣍઴ۙܗ͸ (VFW) ͱ (KdVB) Ͱࠩҟ͕ੜͨ͡: lim t→∞ (1 + t)1− 1 2p + l 2 ∥∂l x (u(·, t) − χ(·, t) − V (·, t) − Q(·, t))∥Lp = 0. ൘ࡔ݈ଠ (ແॴଐ) ೪ੑ FW ͷղͷߴ࣍઴ۙܗ 18 / 18