Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
150
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
410
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
890
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
86
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
570
Other Decks in Technology
See All in Technology
新米エンジニアをTech Leadに任命する ー 成長を支える挑戦的な人と組織のマネジメント
naopr
1
260
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
4
3.8k
プレイドのユニークな技術とインターンのリアル
plaidtech
PRO
1
540
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
280
激動の時代を爆速リチーミングで乗り越えろ
sansantech
PRO
1
180
20251027_findyさん_音声エージェントLT
almondo_event
2
500
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
170
様々なファイルシステム
sat
PRO
0
270
re:Inventに行くまでにやっておきたいこと
nagisa53
0
790
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
8
4.6k
AI駆動で進める依存ライブラリ更新 ─ Vue プロジェクトの品質向上と開発スピード改善の実践録
sayn0
1
350
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
160
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
8
320
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Visualization
eitanlees
150
16k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Producing Creativity
orderedlist
PRO
348
40k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
640
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net