Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
160
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
440
Firebase-React-App
izuna385
0
260
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.8k
UseCase of Entity Linking
izuna385
0
610
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
690
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
910
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.2k
Entity representation with relational attention
izuna385
0
95
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
590
Other Decks in Technology
See All in Technology
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.1k
オープンウェイトのLLMリランカーを契約書で評価する / searchtechjp
sansan_randd
3
640
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
1
180
AI時代、1年目エンジニアの悩み
jin4
1
160
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
150
データの整合性を保ちたいだけなんだ
shoheimitani
7
2.7k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
2
1.9k
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.6k
使いにくいの壁を突破する
sansantech
PRO
1
110
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
220
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
2
820
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
250
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
320
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
170
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
420
The Spectacular Lies of Maps
axbom
PRO
1
510
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net