Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Problems of Neural Networks and its solutions

Problems of Neural Networks and its solutions

Residual Connections とBatch Normalizationがメイン

izuna385

June 21, 2018
Tweet

More Decks by izuna385

Other Decks in Technology

Transcript

  1. 2 / 18 1. NN  !   

      • Residual Network • Batch Normalization 2. 1.   •   •  
  2. 3 / 18 Plain NNs(&) '   pros #%

    "  (ex. CNN, RNN, ...) cons !  $ $ 
  3. 4 / 18 RNN  RNN [1] P. Razvan et

    al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! :   hidden state '%&' :   '() : input /   !" = '*+, 2 !"#$ + '() %"
  4. 5 / 18 !" !# !$ %" %# %$ &'(

    &'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN  3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6  
  5. 6 / 18 RNN  Vanishing/Exploding Gradient : !"#$ !%&

     '( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
  6. 7 / 18 ,$+ /' !"#$ !- !"#$ 2 %

    × '()* + ×%,- → # !"#$      !"#$ . 2 % × '()*(+).,-×%,-   1%input   or 1)* Loss(  RNN ."0& Vanishing/Exploding Gradient
  7. 8 / 18 +$   DeepNN(  ! +

    " )*&!/#% '  (→ ! Loss func ! Loss func   → Residual Connection, Batch No malization 
  8. 9 / 18 0), : Residual Connection – -– F(x)

    "/#2 → "/ F(x) + x  → (4 '$"/ Identity Mapping +%*1&: 3 . !   3  Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
  9. 10 / 18  : Residual Connection –– ' Forward

      $#& Backward  !$"& Deep  %   & input
  10. 12 / 18 ResNet  Batch Normalization ResNet Residual Block

    • ImplementationBatch Normalization NN ! $# • Batch Normalization"    ## http://torch.ch/blog/2016/02/04/resnets.html Plain
  11. 13 / 18  (  ) 1  2

     ( ) n   … Batch Normalization –Revisit Gaussian-    
  12. 14 / 18 Batch Normalization -Input Data distribution  

     -  (Convergence) !! Input NN  →  input   
  13. 15 / 18 Batch Normalization -distribution - !"#$% & '

    = ) & ' ← ' − , - ~/(,, -2)     input  
  14. 16 / 18 Batch Normalization Data distribution •  

    =(!, ")fix • Batch Normalization      Batch Normalization    
  15. 17 / 18 Batch Normalization –   [2]Ioffe, Sergey,

    and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( →  normalize scaling '"&#   nomalize
  16. 18 / 18    DeepNN+  ! /

    & -"#.#)%/'( *$ +!→   ,  Identity – normalize  scaling implement  Deep Net