Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Skeltrack - Open Source Skeleton Tracking
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Joaquim Rocha
May 26, 2012
Programming
0
190
Skeltrack - Open Source Skeleton Tracking
Presentation of Skeltrack -- the only Open Source library for skeleton tracking.
Joaquim Rocha
May 26, 2012
Tweet
Share
More Decks by Joaquim Rocha
See All by Joaquim Rocha
Git: Best Practices
jrocha
3
3.8k
Skeltrack: Open Source Skeleton Tracking
jrocha
1
200
OCRFeeder: OCR Made Easy on GNOME
jrocha
1
320
Introduction to Django
jrocha
5
3.8k
Skeltrack: Open Source Skeleton Tracking
jrocha
1
3.1k
Other Decks in Programming
See All in Programming
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
120
CSC307 Lecture 03
javiergs
PRO
1
490
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.4k
CSC307 Lecture 06
javiergs
PRO
0
680
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
450
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
230
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
620
AI巻き込み型コードレビューのススメ
nealle
1
240
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
700
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
698
190k
It's Worth the Effort
3n
188
29k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Between Models and Reality
mayunak
1
190
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
WENDY [Excerpt]
tessaabrams
9
36k
KATA
mclloyd
PRO
34
15k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Transcript
Skeltrack - Open Source Skeleton Tracking Joaquim Rocha, Igalia LinuxTag
2012 - Wunderbare Berlin
Guten Tag! ✩ I am a developer at Igalia ✩
I like doing innovative stuff like OCRFeeder and SeriesFinale ✩ and today I am presenting my latest project: Skeltrack
The Kinect
Microsoft's Kinect was the first camera with a price affordable
to the public
The USB connection is open and thus hackable
This originated Open Source projects like the libfreenect, a library
to control the Kinect device and get its information
We created a GLib wrapper for libfreenect called GFreenect
GFreenect offers asynchronous functions (and some synchronous as well) and
makes it easy to use with other GNOME technologies
GObject Introspection = free bindings (Python, Javascript, Vala)
Kinect has a structured light camera which gives depth information
But that's raw information... values from 0-2048
libfreenect/GFreenect can give those values in mm
None
Still...
It does NOT tell you there is a person in
the picture
Or a cow
Or an ampelmann
Let alone a skeleton and where its joints are
For this you need a skeleton tracking solution
Three proprietary/closed solutions exist:
Microsoft Kinect SDK: non-commercial only
OpenNI: commercial compatible
Kinect for Windows: commercial use allowed but incompatible with the
XBox's Kinect
None
Conclusion: There were no Free solutions to perform skeleton tracking...
:(
So Igalia built one!
Enter Skeltrack
What we wanted: ✩ A shared library, no fancy SDK
✩ Device independent ✩ No pattern matching, no databases ✩ Easy to use (everybody wants that!)
Not as easy as it sounds!
After some investigation we found Andreas Baak's paper "A Data-Driven
Approach for Real-Time Full Body Pose Reconstruction from a Depth Camera"
However this paper uses a database of poses to get
what the user is doing
So we based only part of our work on it
How does it work?
First we need to find the extremas
Make a graph whose nodes are the depth pixels
Connect two nodes if the distance is less than a
certain value
Connect the different graph's components by using connected-component labeling
Choose a starting point and calculate Dijkstra to each point
of the graph; choose the furthest point. There you got your extrema!
Then create an edge between the starting point and the
current extrema point with 0 cost and repeat the same process now using the current extrema as a starting point.
This comes from Baak's paper and the difference starts here:
choosing the starting point
Baak chooses a centroid as the starting point We choose
the bottom-most point starting from the centroid (this showed better results for the upper body extremas)
So we got ourselves some extremas! What to do with
them?
What extrema is a hand, a head, a shoulder?
For that we use educated guesses...
We calculate 3 extremas
Then we check each of them hoping they are the
head
How?
For each extrema we look for the points in places
where the shoulders should be, checking their distances between the extrema and between each other.
If they obey those rules then we assume they are
the head'n'shoulders (tm)
With the remaining 2 extremas, we will try to see
if they are elbows or hands
How to do it?
Calculate Dijkstra from the shoulders to each extrema
The closest extrema to any of the shoulders is either
a hand of an elbow of that shoulder
How to check if it's a hand or an elbow?
If the distance between the extrema and the shoulder is
less than a predefined value, then it is an elbow. Otherwise it is a hand.
If it is a hand, we find the elbow by
choosing the first point (in the path we created with Dijkstra before) whose distance exceeds the elbow distance mentioned before
None
There is still some things missing...
Future work
Hands from elbows: If one of the extremas is an
elbow, we need to infer where the hand is
Smoothing: Smooth the jittering of the joints
Robustness: Use restrictions to ignore objects that are not the
user
Multi-user: Track more than one person at a time
And of course, get the rest of the joints: hips,
knees, etc.
How to use it?
Asynchronous API
SkeltrackSkeleton *skeleton = SKELTRACK_SKELETON (skeltrack_skeleton_new ()); skeltrack_skeleton_track_joints (skeleton, depth_buffer, buffer_width,
buffer_height, NULL, on_track_joints, NULL);
None
Synchronous API
SkeltrackJointList list; list = skeltrack_skeleton_track_joints_sync (skeleton, depth_buffer, buffer_width, buffer_height, NULL,
NULL);
Skeleton Joint: ID: HEAD, LEFT_ELBOW, RIGHT_HAND, ... x: X coordinate
in real world (in mm) y: Y coordinate in real world (in mm) screen_x: X coordinate in the screen (in pixels) screen_y: Y coordinate in the screen (in pixels)
Code/Bugs: https://github.com/joaquimrocha/Skeltrack
Nifty Tools for Development: GFreenect: https://github.com/elima/GFreenect GFreenect Utils: https://github.com/joaquimrocha/gfreenect-utils
GFreenect Python Example
Tool: record-depth-file
Tool: depth-file-viewer
Questions?
Creative Commons pictures from flickr: Kinect: Auxo.co.kr Ampelmann: echiner1 Kid
Playing: Rob Welsh Skeleton: Dark Botxy