Upgrade to Pro — share decks privately, control downloads, hide ads and more …

AI를 설명하면서 속도도 빠르게 할 순 없을까? SHAP 가속화 이야기 (feat. ...

kakao
November 01, 2024

AI를 설명하면서 속도도 빠르게 할 순 없을까? SHAP 가속화 이야기 (feat. 산학협력)

#XAI #산학협력 #금융

AI 분야에서 설명 가능한 인공지능의 중요성이 계속 강조되고 있습니다. 지난 2023년부터 KAIST 설명가능 인공지능 연구센터(XAIC)와 산학협력을 통해 카카오뱅크에 사용중인 설명 가능한 인공지능을 개선한 성과와 경험을 공유합니다.

발표자 : anny.ye, thomas.lee
새로움과 끈질김으로 데이터와 알고리즘에 가치를 불어넣는 Thomas입니다.
AI기술로 금융의 새로운 가능성을 연구하는 Anny입니다.

kakao

November 01, 2024
Tweet

More Decks by kakao

Other Decks in Programming

Transcript

  1. ! 𝑌 = $ 𝑓(𝑋! , 𝑋" , … ,

    𝑋# ) ੑ۱җ ୹۱੄ t࢚ҙҙ҅u
  2. + 𝑦 = ! β$ + ! β! 𝑥! +

    ! β" 𝑥" + ⋯ + ! β# 𝑥# ? ୹۱ী ؀ೠ ੑ۱੄ tӝৈبu
  3. FY नਊ੼ࣻ = ! β$ + ! β! 𝐼(ࣗٙ) +

    ! β" 𝐼(ࠁਬ؀୹) + j + ! β# 𝐼(ো୓੉۱) ? ୹۱ী ؀ೠ ੑ۱੄ tӝৈبu
  4. FY नਊ੼ࣻ = ! β$ + ! β! 𝐼(ࣗٙ) +

    ! β" 𝐼(ࠁਬ؀୹) + j + ! β# 𝐼(ো୓੉۱) ? ୹۱ী ؀ೠ ੑ۱੄ tӝৈبu à 5PCFDPOUJOVFEj
  5. ஠஠য়ߛ௼੄ 9"*  ࠂ੟ೞҊ ׮নೠ ࢎӝ ಁఢਸ ೞաೞա ଺ইࢲ ݽפఠ݂ೞӝ

    য۰ਕਃ L  بݫੋ ૑ध੉ա ࢤпೞח оࢸ ҃೷੸ਵ۽ ୓ٙೠ ֢ೞ਋ܳ ঌ۰઱दݶ ୭؀ೠ Ѩૐ оמೞب۾ ѐߊ೧ࠁѷणפ׮ э੉ ٜ݅যࠊਃ J ࣗ࠺੗ࠁഐप "*प
  6. ஠஠য়ߛ௼੄ 9"* è AI 이상거래 예측 확률 : 약 67%

    è 실제 3일 뒤 사고 접수, 보상 처리 건 17세 남학생, mini 카드로 금요일 아침 6시 30분 아이스크림 할인점에서 약 7,000원 결제 AI
  7. ஠஠য়ߛ௼੄ 9"* è "* ੉࢚Ѣې ৘ஏ ഛܫ  ড 

    è पઁ ੌ ٍ ࢎҊ ੽ࣻ ࠁ࢚ ୊ܻ Ѥ ࣁ թ೟ࢤ NJOJ ஠٘۽ Әਃੌ ইஜ द ࠙ ই੉झ௼ܿ ೡੋ੼ীࢲ ড  ਗ Ѿઁ "* 8):
  8. ஠஠য়ߛ௼੄ 9"* ✔ ࣁ ✔ NJOJ஠٘ ✔ ই੉झ௼ܿ ೡੋ੼ ࣁ

    թ೟ࢤ NJOJ ஠٘۽ Әਃੌ ইஜ द ࠙ ই੉झ௼ܿ ೡੋ੼ীࢲ ড  ਗ Ѿઁ
  9. ஠஠য়ߛ௼੄ 9"* ژې ஘ҳٜ੉ ই੉झ௼ܿ ೡੋ੼ীࢲ ࣗ࠺ೞח ಁఢ ࣁ թ೟ࢤ

    NJOJ ஠٘۽ Әਃੌ ইஜ द ࠙ী ই੉झ௼ܿ ೡੋ੼ীࢲ ড  ਗ੉ Ѿઁؽ … Ѿઁ दр
  10. ஠஠য়ߛ௼੄ 9"* ࣁ թ೟ࢤ NJOJ ஠٘۽ Әਃੌ ইஜ द ࠙ী

    ই੉झ௼ܿ ೡੋ੼ীࢲ ড  ਗ੉ Ѿઁؽ ژې ஘ҳٜ੉ ই੉झ௼ܿ ೡੋ੼ীࢲ ࣗ࠺ೞח ಁఢ … Ѿઁ Әঘ
  11. ஠஠য়ߛ௼੄ 9"* ੋҕ૑מ ݽ؛ ੉࢚Ѣې ఐ૑ Ѿҗ ࢎӝഛܫ ড 

    "* അস ੹ޙо ੉࢚Ѣې ಁఢ ౵ঈ ,FSOFM4)"1 ӝ߈ ੉࢚Ѣې ఐ૑ Ѿҗ ੉ਬ ࢑୹
  12. ஠஠য়ߛ௼੄ 9"* ੋҕ૑מ ݽ؛ ੉࢚Ѣې ఐ૑ Ѿҗ ࢎӝഛܫ ড 

    "* അস ੹ޙо ੉࢚Ѣې ಁఢ ౵ঈ ,FSOFM4)"1 ӝ߈ ੉࢚Ѣې ఐ૑ Ѿҗ ੉ਬ ࢑୹ ࣗਃदр  _ ୡ
  13. ஠஠য়ߛ௼੄ 9"* ੋҕ૑מ ݽ؛ ੉࢚Ѣې ఐ૑ Ѿҗ ࢎӝഛܫ ড 

    "* അস ੹ޙо ੉࢚Ѣې ಁఢ ౵ঈ ,FSOFM4)"1 ӝ߈ ੉࢚Ѣې ఐ૑ Ѿҗ ੉ਬ ࢑୹ ୡ ޷݅ оࣘച ೙ਃ
  14. ஠஠য়ߛ௼੄ 9"* ੋҕ૑מ ݽ؛ ੉࢚Ѣې ఐ૑ Ѿҗ ࢎӝഛܫ ড 

    "* അস ੹ޙо ੉࢚Ѣې ಁఢ ౵ঈ ,FSOFM4)"1 ӝ߈ ੉࢚Ѣې ఐ૑ Ѿҗ ੉ਬ ࢑୹ ୡ ޷݅ оࣘച ೙ਃ 3%.PUJWBUJPO
  15. .-0QT प ࢲ࠺झ ੸ਊ .POJUPSJOH 4ZTUFN %PNBJO&YQFSU  Ѿҗ Ѩૐ

     بݫੋ ૑ध  ҃೷ "*.PEFM 5SBOTBDUJPO &WFOU %BUB1SPD %BUB4DJFOUJTU j
  16. .-0QT प ࢲ࠺झ ੸ਊ .POJUPSJOH 4ZTUFN %PNBJO&YQFSU  Ѿҗ Ѩૐ

     بݫੋ ૑ध  ҃೷ "*.PEFM 5SBOTBDUJPO &WFOU %BUB1SPD ழޭפா੉࣌ ࠺ਊ ֫਺ j %BUB4DJFOUJTU  ݽ؛ ٣ߡӦ XՐ੐হח  ࢿמ ѐࢶ X֢য়۱
  17. .-0QT प ࢲ࠺झ ੸ਊ .POJUPSJOH 4ZTUFN %PNBJO&YQFSU  Ѿҗ Ѩૐ

     بݫੋ ૑ध  ҃೷ "*.PEFM 5SBOTBDUJPO &WFOU %BUB1SPD оࣘച 9"* %BUB4DJFOUJTU j
  18. प ࢲ࠺झ ੸ਊ 5SBOTBDUJPO &WFOU .-0QT "*.PEFM %BUB1SPD оࣘച 9"*

    .POJUPSJOH 4ZTUFN %PNBJO&YQFSU  Ѿҗ Ѩૐ  بݫੋ ૑ध  ҃೷ %BUB4DJFOUJTU j
  19. प ࢲ࠺झ ੸ਊ 5SBOTBDUJPO &WFOU .-0QT "*.PEFM %BUB1SPD %PNBJO&YQFSU 

    Ѿҗ Ѩૐ   بݫੋ ૑ध  ҃೷  %BUB4DJFOUJTU  ݽ؛ ٣ߡӦ X9"*  ࢿמ ѐࢶ X9"* ਗഝೠ ழޭפா੉࣌  *5*OUFSOBM"VEJU5FBN  "*Ѣߡքझ ળࣻ ੼Ѩ  ݽ؛ ಞೱࢿ ੉ग ੼Ѩ оࣘച 9"* .POJUPSJOH 4ZTUFN j
  20. प ࢲ࠺झ ੸ਊ 9"* ঌҊ્ܻ 9"*Ѿҗ ࢑୹ ࣘب MBUFODZ ߛ௼

    "*ݽ؛  ߛ௼ "* ݽ؛  ߛ௼ "*ݽ؛  ,FSOFM4)"1 CBTFMJOF Y Y Y оࣘച ,FSOFM4)"1 3% ױ҅ 4".4)"1 3%ױ҅
  21. प ࢲ࠺झ ੸ਊ 9"* ঌҊ્ܻ 9"*Ѿҗ ࢑୹ ࣘب MBUFODZ ߛ௼

    "*ݽ؛  ߛ௼ "* ݽ؛  ߛ௼ "*ݽ؛  ,FSOFM4)"1 CBTFMJOF Y Y Y оࣘച ,FSOFM4)"1 3% ױ҅ Y ‚  Y ‚  Y ‚  4".4)"1 3%ױ҅
  22. प ࢲ࠺झ ੸ਊ XAI 알고리즘 XAI 결과 산출 속도 (latency)

    뱅크 AI 모델 (1) 뱅크 AI 모델 (2) 뱅크 AI 모델 (3) KernelSHAP1) (baseline) 01.00 x 01.00 x 01.00 x 가속화 KernelSHAP (R&D 1단계) 02.38 x (± 0.12) 02.82 x (± 0.39) 02.97 x (± 0.44) SAMSHAP (R&D 2단계) 10.35 x (± 1.36) 04.81 x (± 0.79) 07.70 x (± 1.94)
  23. प ࢲ࠺झ ੸ਊ 9"* ঌҊ્ܻ 9"*Ѿҗ ࢑୹ ࣘب MBUFODZ ߛ௼

    "*ݽ؛  ߛ௼ "* ݽ؛  ߛ௼ "*ݽ؛  ,FSOFM4)"1 CBTFMJOF Y Y Y оࣘച ,FSOFM4)"1 3% ױ҅ Y ‚  Y ‚  Y ‚  4".4)"1 3%ױ҅ Y ‚  Y ‚  Y ‚  )PX t"*ܳ ޖट ߑߨਵ۽ ࢸݺ೮ਵݴ যڌѱ оࣘച ೠѤоਃ u
  24. प ࢲ࠺झ ੸ਊ 9"* ঌҊ્ܻ 9"*Ѿҗ ࢑୹ ࣘب MBUFODZ ߛ௼

    "*ݽ؛  ߛ௼ "* ݽ؛  ߛ௼ "*ݽ؛  ,FSOFM4)"1 CBTFMJOF Y Y Y оࣘച ,FSOFM4)"1 3% ױ҅ Y ‚  Y ‚  Y ‚  4".4)"1 3%ױ҅ Y ‚  Y ‚  Y ‚  4)"1 4)BQMFZ "EEJUJWF FY1MBOBUJPOT
  25. 4)"1 ਷ ഈ۱ѱ੐੉ۿ DPBMJUJPOBMHBNFUIFPSZ ઺ীࢲ п ѱ੐ ଵৈ੗ QMBZFS ীѱ

    ࣻ੊੄ ߓ׼ QBZPVU ਸ tҕ੿ೞѱ ߓ࠙uೞח ߑߨਵ۽ ੜ ঌ۰૓ 4IBQMFZ7BMVFܳ ӝ߈ਵ۽ ೠ׮ ݠन۞׬ ޙઁܳ ഈ۱੸ ѱ੐ ޙઁ۽ ࠺ਬೞݶ ৘ஏч 𝑦̂ ª QBZPVU ਸ ࢑୹ೞח ঌҊ્ܻ 𝑓 ª DPBMJUJPOBMHBNF ী ߸ࣻо ੑ۱ 𝑋𝑝 ª QMBZFS عਸ ٸ п ੑ۱߸ࣻо ৘ஏчী ӝৈೠ ੿بܳ ҕ੿ೞѱ ஏ੿ೠ Ѿҗ 𝛽𝑝 ª 4IBQMFZ 7BMVF ܳ ଺ח Ѫ ੉୊ۢ 4IBQMFZWBMVFߑߨۿਸ 9"*ޙઁী 1SBDUJDBMೞѱ ਽ਊೠ ঌҊ્ܻ੉ 4)"1 4)BQMFZ "EEJUJWFFY1MBOBUJPOT ੉׮ 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1  ಪ ֢੉݅ ੉ۿ࢚ ࢚ࣻ  ֢߰ ҃ઁ೟࢚ ࢚ࣻ  -MPZE4IBQMFZ _
  26. ! β!! 𝑓, 𝑥 = ' 4IBQMFZ7BMVFT   

       4VCTFU      j 4VCTFU )JHIFS XFJHIU -PXFS XFJHIU 4VCTFU )JHIFS XFJHIU     
  27. ! β!! 𝑓, 𝑥 = ' 4IBQMFZ7BMVFT   

       4VCTFU      j 4VCTFU )JHIFS XFJHIU -PXFS XFJHIU 4VCTFU )JHIFS XFJHIU     
  28. ! β!! 𝑓, 𝑥 = ' 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 

         4VCTFU      j 4VCTFU )JHIFS XFJHIU -PXFS XFJHIU 4VCTFU )JHIFS XFJHIU      𝑥" 𝑥# 𝑥$ 𝑥" 𝑥# 𝑥$
  29. 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 ! β# 𝑓, 𝑥 = 3 %⊆'\

    # 𝐹 1, 𝑆 , 𝐹 − 𝑆 − 1 )! 𝑓%∪ # (𝑥%∪ # ) − 𝑓% (𝑥% ) where : F = the set of all features S = the set of all feature subsets • Features are like simplified or aggregated data in case of unstructured dataset. • To exclude a specific feature, we just input random values from trainset. à SHAP is approximated Shapley Value with sampling feature subsets and fitting a surrogate model. XFJHIUFEBWFSBHFPGBMMQPTTJCMFEJGGFSFODFT XFJHIUJOHXNVMUJOPNJBM DPFGGJDJFOU EJGGFSFODFCXDPPQFSBUJPO PSOPU .BSHJOBM$POUSJCVUJPO
  30. 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 ! β# 𝑓, 𝑥 = 3 %⊆'\

    # 1! 𝑆 ! 𝐹 − 𝑆 − 1 ! 𝐹 ! 𝑓%∪ # (𝑥%∪ # ) − 𝑓% (𝑥% ) where : F = the set of all features S = the set of all feature subsets • Features are like simplified or aggregated data in case of unstructured dataset. • To exclude a specific feature, we just input random values from trainset. à SHAP is approximated Shapley Value with sampling feature subsets and fitting a surrogate model. XFJHIUFE BWFSBHFPGBMMQPTTJCMFEJGGFSFODFT XFJHIUJOHXNVMUJOPNJBM DPFGGJDJFOU EJGGFSFODFCXDPPQFSBUJPO PSOPU .BSHJOBM$POUSJCVUJPO
  31. 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 ! β# 𝑓, 𝑥 = 3 %⊆'\

    # 𝐹 1, 𝑆 , 𝐹 − 𝑆 − 1 )! 𝑓%∪ # (𝑥%∪ # ) − 𝑓% (𝑥% ) where : F = the set of all features S = the set of all feature subsets • Features are like simplified or aggregated data in case of unstructured dataset. • To exclude a specific feature, we just input random values from trainset. à SHAP is approximated Shapley Value with sampling feature subsets and fitting a surrogate model. XFJHIUFEBWFSBHFPGBMMQPTTJCMFEJGGFSFODFT XFJHIUJOHXNVMUJOPNJBM DPFGGJDJFOU EJGGFSFODFCXDPPQFSBUJPO PSOPU .BSHJOBM$POUSJCVUJPO
  32. 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 ϕ# 𝑓, 𝑥 = 3 %⊆'\ #

    1! 𝑆 ! 𝐹 − 𝑆 − 1 ! 𝐹 ! 𝑓%∪ # (𝑥%∪ # ) − 𝑓% (𝑥% ) where : F = the set of all features S = the set of all feature subsets • Features are like simplified or aggregated data in case of unstructured dataset. • To exclude a specific feature, we just input random values from trainset. à SHAP is approximated Shapley Value with sampling feature subsets and fitting a surrogate model. XFJHIUFEBWFSBHFPGBMMQPTTJCMFEJGGFSFODFT XFJHIUJOHXNVMUJOPNJBM DPFGGJDJFOU EJGGFSFODFCXDPPQFSBUJPO PSOPU .BSHJOBM$POUSJCVUJPO
  33. ݽٚ оמೠ ઑ೤ী ؀ೠ ӝৈب ҅࢑ਸ ਤ೧ ݒ਋ ݆਷ ҅࢑

    ࠺ਊ ࣗਃ 4)BQMFZ "EEJUJWFFY1MBOBUJPOT 4)"1 ϕ# 𝑓, 𝑥 = 3 %⊆'\ # 1! 𝑆 ! 𝐹 − 𝑆 − 1 ! 𝐹 ! 𝑓%∪ # (𝑥%∪ # ) − 𝑓% (𝑥% ) ೠ҅੼
  34. ,FSOFM4)"1 Approximation of Shapley value 4BNQMJOH ⋮ оמೠ 'FBUVSF4VCTFU 2!ѐ

    𝑋 ∈ 0(𝑎𝑏𝑠𝑒𝑛𝑡), 1(𝑝𝑟𝑒𝑠𝑒𝑛𝑡) ! Y = 𝜙! + 𝜙" 𝑋" + 𝜙# 𝑋# + 𝜙$ 𝑋$ + 𝜙% 𝑋%
  35. ,FSOFM4)"1 Coalition 𝒛     Feature 𝒙 

       Coalition 𝒛!     Feature 𝒉𝒙 (𝒛!)     "CTFOU
  36. ,FSOFM4)"1 Coalition 𝒛     Feature 𝒙 

       Coalition 𝒛!     Feature 𝒉𝒙 (𝒛!)     "CTFOU
  37. ,FSOFM4)"1 Coalition 𝒛     Feature 𝒙 

       ⋮ 𝒇 𝒉𝒙 𝒛𝟏 # Coalition 𝒛𝟏     Coalition 𝒛𝟐     Coalition 𝒛𝒌     𝒇 𝒉𝒙 𝒛𝟐 # 𝒇 𝒉𝒙 𝒛𝒌 # ⋮ 𝐿 𝑓, 𝑔, π"" = 5 #"∈% 𝑓 ℎ" 𝑧& − 𝑔 𝑧& ' 𝜋"" 𝑧& -PTTGVODUJPOUPNJOJNJ[F 8FJHIUJOH,FSOFM 𝑔 𝑧H = 𝜙I + 0 JKL M 𝜙J 𝑧J H FYQMBOBUJPONPEFMUIBUJTBMJOFBSGVODUJPOPGCJOBSZWBSJBCMFT where : 𝑧" ∈ 0, 1 #, M is the number of simplified input features 𝜙 = Shapley value
  38. ,FSOFM4)"1 Exact Shapley Value KernelSHAP 장점 - 특징별 중요도를 정확히

    계산 가능함 - 샘플 수가 많을수록 Exact Shapley Value와 근사함 - Exact Shapley Value보다 계산 시간 단축 - Model-Agnostic 한 방법론 단점 - 2& 만큼의 경우의 수를 고려해야하기 때문에 계산 속도가 느림 - Exact Shapley Value에 근사하기 위해서는 많은 샘플 수를 필요로 함 à 계산 시간 증가
  39. ,FSOFM4)"1 &YBDU4IBQMFZ7BMVF ,FSOFM4)"1 ੢੼  ౠ૚߹ ઺ਃبܳ ੿ഛ൤ ҅࢑ оמೣ

     ࢠ೒ ࣻо ݆ਸࣻ۾ &YBDU 4IBQMFZ7BMVF৬ Ӕࢎೣ  &YBDU 4IBQMFZ7BMVFࠁ׮ ҅࢑ दр ױ୷  .PEFM"HOPTUJDೠ ߑߨۿ ױ੼ - 𝟐𝐅 ݅ఀ੄ ҃਋੄ ࣻܳ Ҋ۰೧ঠೞӝ ٸޙী ҅࢑ ࣘبо וܿ  &YBDU 4IBQMFZ 7BMVFী Ӕࢎೞӝ ਤ೧ࢲח ݆਷ ࢠ೒ ࣻܳ ೙ਃ۽ ೣ à ҅࢑ दр ૐо оࣘച ؀࢚ ݽ؛
  40. оࣘച ߑউ ઑࢎ 9"*ঌҊ્ܻ оࣘച োҳ ੢੼ ױ੼ ূ૑פয݂ ӝ߈

     ӝઓ 9"*ঌҊ્ܻҗ زੌೠ Ѿҗܳ ب୹ೞݴ ҅࢑दр ױ୷ оמ  ҳഅػ ௏٘ী ٮۄࢲ оࣘച оמ ৈࠗ Ѿ੿ ঌҊ્ܻ ӝ߈ "NPSUJ[FE  ҅࢑ दр ௼ѱ ױ୷ оמ  न҃ݎ ݽ؛ਸ ࢎਊೞӝ ٸޙী ӝઓ 9"* ঌҊ્ܻ੄ ࢸݺ۱ ࠁઓ੉ য۰਑ /POBNPSUJ[FE  "NPSUJ[FEߑߨۿ ؀࠺ ࢸݺ۱ਸ ࠁઓೡ ࣻ ੓਺  "NPSUJ[FEߑߨۿ ؀࠺ ҅࢑दр ѐࢶী ೠ҅о ੓਺ ೞ٘ਝয ӝ߈  ӝઓ 9"*ঌҊ્ܻ੄ ࢸݺ۱ਸ ࠁઓ оמೣ  ೞ٘ਝয ੢࠺੄ ઁড੉ ઓ੤
  41. оࣘച ߑউ ઑࢎ ੢੼ ױ੼ ূ૑פয݂ ӝ߈  ӝઓ 9"*ঌҊ્ܻҗ

    زੌೠ Ѿҗܳ ب୹ೞݴ ҅࢑दр ױ୷ оמ  ҳഅػ ௏٘ী ٮۄࢲ оࣘച оמ ৈࠗ Ѿ੿ ঌҊ્ܻ ӝ߈ "NPSUJ[FE  ҅࢑ दр ௼ѱ ױ୷ оמ  न҃ݎ ݽ؛ਸ ࢎਊೞӝ ٸޙী ӝઓ 9"* ঌҊ્ܻ੄ ࢸݺ۱ ࠁઓ੉ য۰਑ /POBNPSUJ[FE  "NPSUJ[FEߑߨۿ ؀࠺ ࢸݺ۱ਸ ࠁઓೡ ࣻ ੓਺  "NPSUJ[FEߑߨۿ ؀࠺ ҅࢑दр ѐࢶী ೠ҅о ੓਺ ೞ٘ਝয ӝ߈  ӝઓ 9"*ঌҊ્ܻ੄ ࢸݺ۱ਸ ࠁઓ оמೣ  ೞ٘ਝয ੢࠺੄ ઁড੉ ઓ੤ 9"*ঌҊ્ܻ оࣘച োҳ
  42. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ ੿ഛب $PTJOF4JNJMBSJUZ 5PQ4JHOFE3BOL"HSFFNFOU ࣘب ࢸݺ दр

    ױ୷ rୡ ޷݅s r'BTU4)"1 ؀࠺ ࢿמ ೱ࢚s 9"*ঌҊ્ܻ оࣘച োҳ
  43. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ $PTJOF4JNJMBSJUZ 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = cos

    Θ = 𝐴 ⋅ 𝐵 𝐴 𝐵 = ∑()* + 𝐴( 𝐵( ∑ ()* + 𝐴( ' ⋅ ∑ ()* + 𝐵( ' 9"*ঌҊ્ܻ оࣘച োҳ ف ߭ఠр пب੄ ௏ࢎੋчਸ ੉ਊ೧ ஏ੿ػ ߭ఠр ਬࢎب
  44. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ 5PQ,4JHOFE3BOL"HSFFNFOU 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸, ,

    𝐸- , 𝑘) = | ⋃.∈/ 𝑓 𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 }| 𝑘 ࢚ਤ ,ѐ ઺ ҕా ౠ૚ਸ ನೣೞח૑ ৈࠗ زੌ ࠗഐ ৈࠗ زੌ ࣽਤ ৈࠗ 9"*ঌҊ્ܻ оࣘച োҳ ف ࢸݺѾҗ੄ ࢚ਤ ,ѐ ౠ૚ GFBUVSF ૘೤ীࢲ زੌೠ ౠࢿ ӝৈب ࠗഐ ৬ ࣽਤо ҕా੸ਵ۽ ನೣػ ౠ૚ٜ੄ ࠺ਯ
  45. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ Rank feature Shapley value 1 Feature

    A 0.9 2 Feature B 0.8 3 Feature C 0.7 4 Feature D 0.6 5 Feature E 0.5 ࢸݺ ݽ؛ 1੄ Ѿҗ(𝐸!) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ Rank feature Shapley value 1 Feature A 0.85 2 Feature B 0.8 3 Feature D 0.75 4 Feature E 0.6 5 Feature F 0.55 ࢸݺ ݽ؛ 2੄ Ѿҗ(𝐸" ) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸! , 𝐸" , 𝑘) = ⋃#∈% 𝒇|𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 𝑘 9"*ঌҊ્ܻ оࣘച োҳ
  46. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ Rank feature Shapley value 1 Feature

    A 0.9 2 Feature B 0.8 3 Feature C 0.7 4 Feature D 0.6 5 Feature E 0.5 Rank feature Shapley value 1 Feature A 0.85 2 Feature B 0.8 3 Feature D 0.75 4 Feature E 0.6 5 Feature F 0.55 ࢚ਤ ,ѐ ઺ ҕా ౠ૚ਸ ನೣೞח૑ ৈࠗ ࢸݺ ݽ؛ 1੄ Ѿҗ(𝐸!) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ ࢸݺ ݽ؛ 2੄ Ѿҗ(𝐸" ) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸! , 𝐸" , 𝑘) = ⋃#∈% 𝒇|𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 𝑘 9"*ঌҊ્ܻ оࣘച োҳ
  47. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ Rank feature Shapley value 1 Feature

    A 0.9 2 Feature B 0.8 3 Feature C 0.7 4 Feature D 0.6 5 Feature E 0.5 Rank feature Shapley value 1 Feature A 0.85 2 Feature B 0.8 3 Feature D 0.75 4 Feature E 0.6 5 Feature F 0.55 زੌ ࠗഐ ৈࠗ ࢸݺ ݽ؛ 1੄ Ѿҗ(𝐸!) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ ࢸݺ ݽ؛ 2੄ Ѿҗ(𝐸" ) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸! , 𝐸" , 𝑘) = ⋃#∈% 𝒇|𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 𝑘 9"*ঌҊ્ܻ оࣘച োҳ
  48. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ Rank feature Shapley value 1 Feature

    A 0.9 2 Feature B 0.8 3 Feature C 0.7 4 Feature D 0.6 5 Feature E 0.5 Rank feature Shapley value 1 Feature A 0.85 2 Feature B 0.8 3 Feature D 0.75 4 Feature E 0.6 5 Feature F 0.55 ࢸݺ ݽ؛ 1੄ Ѿҗ(𝐸!) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ ࢸݺ ݽ؛ 2੄ Ѿҗ(𝐸" ) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ زੌ ࣽਤ ৈࠗ 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸! , 𝐸" , 𝑘) = ⋃#∈% 𝒇|𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 𝑘 9"*ঌҊ્ܻ оࣘച োҳ
  49. оࣘച ঌҊ્ܻ ಣо૑಴ ࢶ੿ Rank feature Shapley value 1 Feature

    A 0.9 2 Feature B 0.8 3 Feature C 0.7 4 Feature D 0.6 5 Feature E 0.5 Rank feature Shapley value 1 Feature A 0.85 2 Feature B 0.8 3 Feature D 0.75 4 Feature E 0.6 5 Feature F 0.55 = 𝟐/𝟓 ࢸݺ ݽ؛ 1੄ Ѿҗ(𝐸!) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ ࢸݺ ݽ؛ 2੄ Ѿҗ(𝐸" ) ࢚ਤ 5ѐ੄ ౠ૚җ Ӓ ࣽਤ 𝑇𝑜𝑝 − 𝑘 𝑆𝑖𝑔𝑛𝑒𝑑𝑅𝑎𝑛𝑘𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐸! , 𝐸" , 𝑘) = ⋃#∈% 𝒇|𝒇 ∈ 𝑻𝑭 𝑬𝒂 , 𝒌 ∧ 𝒇 ∈ 𝑻𝑭 𝑬𝒃 , 𝒌 ∧ 𝑺 𝑬𝒂 , 𝒇 = 𝑺 𝑬𝒃 , 𝒇 ∧ 𝑹 𝑬𝒂 , 𝒇 = 𝑹 𝑬𝒃 , 𝒇 𝑘 9"*ঌҊ્ܻ оࣘച োҳ
  50. ஠஠য়ߛ௼ पؘ੉ఠ оࣘചػ 9"*ঌҊ્ܻ ѐߊ '%4ݽ؛ оࣘചػ 9"*ঌҊ્ܻ ੸ਊ ஠஠য়ߛ௼

    9"*$ '%4ݽ؛ ஠஠য়ߛ௼ ۄ੉࠳ ݽ؛ ੸ਊद 9"*ঌҊ્ܻ оࣘച ഛੋ оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ #BOL"DDPVOU'SBVE #"'  %BUB
  51. ৡۄੋ ਷೯ ҅ઝ ѐࢸ ࢎӝఐ૑ܳ ਤೠ ҕѐ ؘ੉ఠࣇ ؘ੉ఠ ࠛӐഋ

    ߸ࣻ ઙܨ ١ पઁ ؘ੉ఠ৬ ݒ਋ ਬࢎೠ ഋక оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ #BOL"DDPVOU'SBVE #"'  %BUB
  52. ஠஠য়ߛ௼੄ ੉࢚ఐ૑ ࢎਊ ݽ؛ ঌҊ્ܻ ,FSOFM4)"1 ঌҊ્ܻ ੉ਊ ஠஠য়ߛ௼੄ पؘ੉ఠܳ

    ࢸݺೞחؘ _ୡ ࣗਃ ,FSOFM4)"1 ঌҊ્ܻ ੉ਊ #BOL"DDPVOU'SBVE ؘ੉ఠܳ ࢸݺೞחؘ ୡ ࣗਃ оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ '%4ݽ؛
  53. ,FSOFM4)"1੄ ੿ഛبܳ ਬ૑ೞݴ оࣘചػ ঌҊ્ܻ ѐߊ ӝઓ ,FSOFM4)"1਷ ҅࢑ী ࢎਊೞח

    ࢠ೒ ࣻী ٮۄ ੿ഛب৬ ҅࢑ࣘبী ௾ ৔ೱਸ ޷ஜ ,FSOFM4)"1਷ .PEFM"HOPTUJDߑߨۿ оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ оࣘചػ 9"*ঌҊ્ܻ ѐߊ
  54. оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ #BOL"DDPVOU'SBVE #"'  %BUB

    оࣘചػ 9"*ঌҊ્ܻ ѐߊ 9"*$ '%4ݽ؛ ஠஠য়ߛ௼ पؘ੉ఠ '%4ݽ؛ оࣘചػ 9"*ঌҊ્ܻ ੸ਊ ஠஠য়ߛ௼ ஠஠য়ߛ௼ ۄ੉࠳ ݽ؛ ੸ਊद 9"*ঌҊ્ܻ оࣘച ഛੋ
  55. оࣘച ঌҊ્ܻ ѐߊ ূ૑פয݂ ӝ߈ ঌҊ્ܻ ӝ߈ 'BTU4)"1 ѐࢶ ,FSOFM4)"1

    ѐࢶ ੿ഛب ࣘب ӝઓ ,FSOFM4)"1 ࢸݺ۱ ࠁઓ оࣘച ୭؀ 9"*ঌҊ્ܻ оࣘച োҳ
  56. оࣘച ঌҊ્ܻ ѐߊ • ,FSOFM4)"1੄ ࢸݺ۱ ࠁઓ • ,FSOFM4)"1 ؀࠺

    ҅࢑ ࣘب ࡅܴ • ੿ഛب ഛࠁܳ ਤ೧ ݆਷ ࢠ೒ ࣻо ೙ਃ ੢੼ ױ੼ оࣘച ,FSOFM4)"1 9"*ঌҊ્ܻ оࣘച োҳ
  57. оࣘച ঌҊ્ܻ ѐߊ ߓؘ҃੉ఠ 𝒇 𝒉𝒙 𝒛𝟏 ! 𝒇 𝒉𝒙

    𝒛𝟐 ! 𝒇 𝒉𝒙 𝒛𝒌 ! ⋮ 9"*ঌҊ્ܻ оࣘച োҳ • ӝઓ ,FSOFM4)"1 "QQSPYJNBUJPO 𝑓 ℎ! 𝑧"
  58. оࣘച ঌҊ્ܻ ѐߊ ҅࢑ ࣘب ੷ೞ "QQSPYJNBUJPO 𝑓 ℎ! 𝑧"

    ߓؘ҃੉ఠ 𝒇 𝒉𝒙 𝒛𝟏 ! 𝒇 𝒉𝒙 𝒛𝟐 ! 𝒇 𝒉𝒙 𝒛𝒌 ! ⋮ • ӝઓ ,FSOFM4)"1 9"*ঌҊ્ܻ оࣘച োҳ
  59. оࣘച ঌҊ્ܻ ѐߊ ߓؘ҃੉ఠ 𝒇 𝒉𝒙 𝒛𝟏 ! 𝒇 𝒉𝒙

    𝒛𝟐 ! 𝒇 𝒉𝒙 𝒛𝒌 ! ⋮ ҅࢑ ࣘب ೱ࢚ • 'BTU4)"1 ؀ܻ ݽ؛ о۰૓ ੑ۱чী ؀೧ࢲ ࢸݺ ؀࢚ ݽ؛җ э਷ чਸ ୹۱ೞب۾ ೟णೠ न҃ݎ ݽ؛ ӝ߈੄ ؀ܻ ݽ؛ 9"*ঌҊ્ܻ оࣘച োҳ
  60. оࣘച ঌҊ્ܻ ѐߊ ؀ܻ ݽ؛ ࢸݺ ؀࢚ ݽ؛ ؀ܻݽ؛ਸ ੉ਊೞৈ

    4IBQMFZWBMVFܳ ৘ஏೞب۾ ೟णೠ न҃ݎ ݽ؛ ӝ߈੄ ࢸݺ ݽ؛ ࢸݺ ݽ؛ о۰૓ ੑ۱чী ؀೧ࢲ ࢸݺ ؀࢚ ݽ؛җ э਷ чਸ ୹۱ೞب۾ ೟णೠ न҃ݎ ݽ؛ ӝ߈੄ ؀ܻ ݽ؛ 9"*ঌҊ્ܻ оࣘച োҳ • 'BTU4)"1
  61. оࣘച ঌҊ્ܻ ѐߊ • ,FSOFM4)"1 ؀࠺ ҅࢑ ࣘب ࡅܴ •

    ,FSOFM4)"1 ؀࠺ ࢸݺ۱ ੷ೞ ੢੼ ױ੼ 'BTU4)"1 9"*ঌҊ્ܻ оࣘച োҳ
  62. оࣘച ,FSOFM4)"1 'BTU4)"1 ূ૑פয݂ ӝ߈ оࣘച ঌҊ્ܻ ӝ߈ оࣘച 4".4)"1

    4VSSPHBUFGPS"NPSUJ[FE.BSHJOBM4)"1 оࣘച ঌҊ્ܻ ѐߊ 9"*ঌҊ્ܻ оࣘച োҳ
  63. оࣘച ঌҊ્ܻ ѐߊ 𝒇 × ≈ ߓ҃ ؘ੉ఠ ؘ੉ఠ о઺஖

    𝒈 ؀ܻݽ؛ 9"*ঌҊ્ܻ оࣘച োҳ
  64. оࣘച ঌҊ્ܻ ѐߊ • ,FSOFM4)"1 ؀࠺ ҅࢑ ࣘب ࡅܴ •

    'BTU4)"1 ؀࠺ ࢸݺ۱ ֫਺ • 'BTU4)"1 ؀࠺ ҅࢑ ࣘب וܿ ੢੼ ױ੼ 4".4)"1 9"*ঌҊ્ܻ оࣘച োҳ
  65. ,FSOFM4)"1 җ੄ r҅࢑ ࣘبs ࠺Ү 100% 42% ≪ 1% 10%

    ,FSOFM4)"1 CBTFMJOF оࣘച ,FSOFM4)"1 'BTU4)"1 4".4)"1 0VST 9"*؀࢚ ஠஠য়ߛ௼ "*ࢲ࠺झ  ݽ؛ ࢑୹ޛ  
  66. ,FSOFM4)"1 җ੄ rࢸݺ য়ରs ࠺Ү 1.00 1.00 0.24 0.92 ,FSOFM4)"1

    CBTFMJOF оࣘച ,FSOFM4)"1 'BTU4)"1 4".4)"1 0VST $PTJOF4JNJMBSJUZ 5PQ4JHOFE3BOL"HSFFNFOU 1.00 1.00 0.02 0.69 ,FSOFM4)"1 CBTFMJOF оࣘച ,FSOFM4)"1 'BTU4)"1 4".4)"1 0VST 9"*؀࢚ ஠஠য়ߛ௼ "*ࢲ࠺झ  ݽ؛ ࢑୹ޛ    
  67.  ࢸݺоמ ੋҕ૑מ F9QMBJOBCMF "*חj  t#MBDLCPYuۄ ܻࠛח "*੄ ੑ

    ୹۱ ࢚ҙҙ҅ܳ ࢸݺೡ ࣻ ੓ח ߑߨۿ  9"*ܳ ా೧ ਋ܻחj  ੋҕ૑מ੄ न܉ࢿਸ ѨૐೞҊ ࢿמਸ ѐࢶೞחؘ ഝਊ ೡ ࣻ ੓ਵݴ  ಽҊ੗ ೞח ޙઁ੄ %PNBJO&YQFSU৬ ࣗాೞݴ ૑ध ֢ೞ਋ оࢸਸ ݽ؛ ѐߊী ੸ਊೡ ࣻ ੓ѱ ೣ  पઁ "*ࢲ࠺झী ഝਊೞӝ ਤೠ ࢑೟ഈ۱ 3%ࣻ೯  ,FSOFM4)"1 ӝળ ࣘبח ୭؀ ߓ ࡅܰݶࢲ ࢶ೯ োҳੋ 'BTU4)"1 ࠁ׮ ੿ഛೠ 9"*ঌҊ્ܻ ѐߊ 정리
  68.  -VOECFSH 4 -FF 4  "6OJGJFE"QQSPBDIUP*OUFSQSFUJOH.PEFM1SFEJDUJPOT/FVS*14   4IBQMFZ

    -4  "7BMVFGPSO1FSTPO(BNFT$POUSJCVUJPOTUPUIF5IFPSZPG(BNFT ". 7PMVNF** m   $IVBOH :/ 8BOH ( :BOH ' -JV ; $BJ 9 %V . )V 9  &GGJDJFOUYBJ UFDIOJRVFT"UBYPOPNJDTVSWFZ BS9JW QSFQSJOUBS9JW  +FTVT 4 1PNCBM + "MWFT % $SV[ " 4BMFJSP 1 3JCFJSP 3 j#J[BSSP 1  5VSOJOHUIF5BCMFT#JBTFE *NCBMBODFE  %ZOBNJD5BCVMBS%BUBTFUTGPS.-&WBMVBUJPO /FVS*14   +FUIBOJ / 4VEBSTIBO . $PWFSU *$ -FF 4* 3BOHBOBUI 3  'BTU4)"13FBM5JNF4IBQMFZ7BMVF &TUJNBUJPO *$-3 ଵҊ ޙ೴
  69. 2"