Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
10分で詰め込むHadoop
Search
kanga333
April 02, 2018
Technology
0
150
10分で詰め込むHadoop
MicroAd 社内LT会資料
kanga333
April 02, 2018
Tweet
Share
More Decks by kanga333
See All by kanga333
Athenaを使ったバッチ処理のTIPS
kanga333
0
820
個々のアプリのリポジトリでTerraformを管理している話
kanga333
4
3.6k
docker_and_make
kanga333
1
390
CoreOS Container Linuxで始めるベアメタルKubernetes
kanga333
3
8.9k
ORCについて調べた
kanga333
0
210
burrow_monitoring
kanga333
0
820
j2hの紹介
kanga333
0
6.2k
Other Decks in Technology
See All in Technology
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
280
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
380
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
230
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
450
allow_retry と Arel.sql / allow_retry and Arel.sql
euglena1215
1
170
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
480
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
250
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
270
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
240
いま注目のAIエージェントを作ってみよう
supermarimobros
0
270
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
150
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
190
Featured
See All Featured
Side Projects
sachag
455
43k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
The Language of Interfaces
destraynor
161
25k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
For a Future-Friendly Web
brad_frost
180
9.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Designing for humans not robots
tammielis
253
25k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Transcript
10分で詰め込むHadoop kagawa_shoichi
あらまし Hadoopとはなんぞやという話を10分で詰め込む ざっくり概要と用途について 厳密には違ったりするかもしれんけど、雰囲気伝わるの重視
(広義の)Hadoopとは HDFS, MapReduce等を中心としたビッグデータ処理の ミドルウェア、ライブラリなんかの総称
(狭義の)Hadoopとは 巨大なデータに対するバッチ処理ミドルウェアである HDFS, YARN, MapReduceの事を示す それぞれについては後述
Hadoopのディストリビューション LinuxにおけるRedhat,Ubuntuと同様にHadoopにも ディストリビューションがある 普通はOSSのHadoopを直で使ったりせず なんらかディストリビューションのものを使う 主要なディストリビューションベンダー Cloudera (CDH) Hortonworks (HDP)
MAPR (MARP) Pivotal (Pivotal HD)
主要Hadoopコンポーネント HDFS YARN MapReduce Spark Hive ZooKeeper
HDFS Hadoop Distributed File System 分散ファイルシステム ファイルをブロックという単位で分割して複数サーバに保持 させる
YARN 分散環境のサーバ郡のリソーススケジューラー ジョブが投入された際に、そのジョブをどのサーバ達でどの くらいのCPU/メモリを割り当てて、実行するかを決定する
MapReduce map処理とreduce処理により大規模データを処理する フレームワーク map([ , , ], cook) => [
, , ] reduce([ , , ], eat) =>
Spark ひとまずは、洗練されたMapReduceくらいに思っておけばOK 中間データをオンメモリで持つから高速 MapとReduceのTaskを行うプロセスを区別せず使い回す 色んな便利ライブラリが付いている 機械学習: Spark ML リアルタイム処理: Spark
Streaming SQL: Spark SQL リアルタイム処理 with SQL: Spark Structured Streaming
Hive SQL処理エンジン SQLをMRやSparkなどのジョブに変換してデータを操作 ちなみにHive on SparkとSpark SQLは別物
Zookeeper 対障害性を高めた分散KVS Hadopコンポーネントのメタデータを管理する 分散環境において、どれがマスタなのか?などを管理
その他Hadoopコンポーネント解説 HBase Kudu Kafka Storm/SparkStreaming Impara/Presto
HBase オンメモリ分散列指向DB HDFSではできないデータの更新などができる ただし、メモリに乗り切るくらいのデータしか扱えない とはいえクラスタを組むのでスケールは可能
Kude 分散列指向ストレージ HDFSとHBaseのギャップを埋めるストレージ TB規模のデータをディスクとして持ちながら更新可能 とはいえ HBaseの方が早い HDFSの方が大規模データに対するスループットはある 用途 リアルタイムに更新などが発生する大規模データに対し て分析などのスキャン的な操作もしたい
Kafka 分散キューイングシステム スケール可能なFIFOでPubSubなキュー
Storm / Spark Streaming 分散リアルタイムバッチ処理フレームワーク リアルデータに対して細かくバッチ処理を行う リアルタイム処理フレームワークは乱立していてカオス リアルタイム処理フレームワーク Apache Flink,
Apache Apex, Heron, Kafka streams 各種リアルタイム処理をDSLで書ける Apache Beam リアルタイム処理をGUIで定義 Apache Nifi, Stream Sets リアルタイム処理 with SQL KSQL, Spark Structured Streaming
Impara / Presto 高速な分散SQL処理エンジン SQLをMRやSparkに変換するHiveと比較してSQLを処理する ことに特化して作られており高速 基本的には耐障害性を犠牲にしてスループットを高める設計 データを全部メモリに乗せて処理する バッチよりアドホッククエリ向き 多分Imparaの方が早いし、CDHと親和性高いけど
Prestoの方が汎用性高い
SQL処理エンジン使い分けの一例 ディスクIO多い単純なSQLジョブ > Hive on MR JOINなどの操作を含める複雑なSQLジョブ > Hive on
Spark アドホッククエリ実行環境 > Presto or Impala 機械学習 > Spark SQL と Spark ML
おわりに 各種ミドルウェアの分類MAP(目安) 厳密にはこんなに綺麗に分かれている訳では無い
None