Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Human-AI Decision Making勉強会] 正確に予測できるAIは人間の意思決...
Search
Kei Moriyama
January 16, 2024
0
340
[Human-AI Decision Making勉強会] 正確に予測できるAIは人間の意思決定を助けるか?
Kei Moriyama
January 16, 2024
Tweet
Share
More Decks by Kei Moriyama
See All by Kei Moriyama
[読み会]Not All Tokens Are Equal: Human-centric Visual Analysis via Token Clustering Transformer
keimoriyama
0
50
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Building Applications with DynamoDB
mza
96
6.7k
How to Think Like a Performance Engineer
csswizardry
27
2.2k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
How to train your dragon (web standard)
notwaldorf
97
6.3k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Pragmatic Product Professional
lauravandoore
36
7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
910
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
ਖ਼֬ʹ༧ଌͰ͖ΔAIਓؒͷҙࢥܾఆ Λॿ͚Δ͔? 2024 / 01 / 1 7 Human-AI Decision
making Learning Human-Compatible Representations for Case-Based Decision Support Han Liu, Yizhou Tian, Chacha Chen, Shi Feng, Yuxin Chen, Chenhao Tan ICLR 2 023 https://iclr.cc/virtual/ 20 23 /poster/ 118 14 ౦ژେֶ അݚڀࣨ M1 कࢁ ܛ
ਖ਼֬ͳ༧ଌΛ͢ΔϞσϧҙࢥܾఆͷʹཱͭͷ͔?
ࠓճѻ͏༰ 香 生 AI 文 AI 人 目 人 AI
AI ? AI 十 ? AI 目
ࠓͷจ Learning Human-Compatible Representations for Case-Based Decision Support ICLR 20
23 人 手
߳ઌੜͷൃදͰ৮ΕΒΕ͍ͯ·ͨ͠ https://speakerdeck.com/rinabouk/ humanai-dm-jc- 202 311 15 ?slide= 38
എܠɿAIʹΑΔλεΫͷࣗಈԽ AI
എܠɿAIͷ༧ଌͷઆ໌ʹΘΕΔͷ AI 人 見 Giang Nguyen, Daeyoung Kim, and Anh
Nguyen. The e ff ectiveness of feature attribution methods and its correlation with automatic evaluation scores. Advances in Neural Information Processing Systems, 34 : 2642 2 – 2 6 43 6 , 2 02 1 .
ิɿAIͷຒΊࠐΈදݱ AI
എܠɿAIͷຒΊࠐΈදݱͷಛੑ AI 人
എܠɿAIͷຒΊࠐΈදݱͷಛੑ
తɿਓؒͷೝʹԊͬͨຒΊࠐΈදݱͷ֫ಘ
ఏҊख๏ͷલʹɿڑֶशʹ͍ͭͯ
ڑֶशʹ༻͍Δଛࣦؔɿ ه߸ͷఆٛ
ڑֶशʹ༻͍Δଛࣦؔ ℒtriplet (x, xp , xn ) = max {0,d(x,
xp ) − d(x, xn )} 小 d(x, xp ) ≤ d(x, xn ) ℒtriplet (x, xp , xn ) = 0 d(x, xp ) > d(x, xn ) ℒtriplet (x, xp , xn ) > 0 方 小
ఏҊख๏ɿมͷఆٛ
ఏҊख๏ɿଛࣦؔ λ − ∑ (x,y)∼D log(pθ (y|x)) + (1 −
λ) ∑ (xr,x+,x−∼T) max(d(xr, x+) − d(xr, x−) + 1,0) ⾒ 人 ⾒ x y D = {(x, y)i }N i=0 T = {(xr, x+, x−)i }M i=0 λ
࣮ݧ 人工 用 人 比
࣮ݧɿൺֱख๏ MLE 目 ( ) TML 行 目 ( )
HC 手 ( ) RIRO 示 λ = 0 λ = 1 λ = 0.5 λ − ∑ (x,y)∼D log(pθ (y|x)) + (1 − λ) ∑ (xr,x+,x−∼T) max(d(xr, x+) − d(xr, x−) + 1,0) 用 目
࣮ݧɿਓσʔλʹ͓͚Δ࣮ݧ 人工 手 Vespula vs Weevil 虫 用 用
࣮ݧɿਓσʔλʹ͓͚Δ࣮ݧ AI 用 行
࣮ݧ݁Ռɿਓσʔλʹ͓͚Δ࣮ݧʹ͓͚ΔείΞ 用
࣮ݧ݁ՌɿͦΕͧΕͷ࣮ݧʹ͓͚ΔείΞ R 1 R 2 HC 方 人工
࣮ݧ݁ՌɿͦΕͧΕͷ࣮ݧʹ͓͚ΔείΞ 見 ⾒ 見 ⾒ Neutral Persuasive ⾒ 手 人工
示
࣮ݧɿਓؒͷҙࢥܾఆΛରͱ࣮ͨ͠ݧ
࣮ݧઃఆ 2 行
࣮ݧ݁Ռ 手 (HC) 手
࣮ݧ݁Ռ (RIRO) MLE 人
·ͱΊ 文 人 手 人 人 示
ٙ 人工 文 Appendix