Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (su...
Search
Kenji Saito
PRO
November 30, 2024
Technology
0
17
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第9回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
回帰分析/大規模言語モデルと統計 / Regression Analysis, Large Language Models and Statistics
ks91
PRO
0
28
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
52
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
39
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
35
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
63
インクルーシブな社会へ / Toward an Inclusive Society
ks91
PRO
0
10
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
56
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
65
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
21
Other Decks in Technology
See All in Technology
サーバレスの未来〜The Key to Simplifying Everything〜
kawaji_scratch
1
230
月間60万ユーザーを抱える 個人開発サービス「Walica」の 技術スタック変遷
miyachin
2
750
商品レコメンドでのexplicit negative feedbackの活用
alpicola
2
470
FODにおけるホーム画面編成のレコメンド
watarukudo
PRO
2
380
スクラムマスターの活動と組織からの期待のズレへの対応 / Dealing with the gap between Scrum Master activities and organizational expectations
pauli
1
620
[JSAC 2025 LT] Introduction to MITRE ATT&CK utilization tools by multiple LLM agents and RAG
4su_para
1
130
RubyでKubernetesプログラミング
sat
PRO
4
160
データ基盤におけるIaCの重要性とその運用
mtpooh
4
700
財務データを題材に、 ETLとは何であるかを考える
shoe116
3
1.5k
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
170
Amazon Route 53, 待ちに待った TLSAレコードのサポート開始
kenichinakamura
0
190
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
770
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
GitHub's CSS Performance
jonrohan
1030
460k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Adopting Sorbet at Scale
ufuk
74
9.2k
Writing Fast Ruby
sferik
628
61k
Designing Experiences People Love
moore
139
23k
Thoughts on Productivity
jonyablonski
68
4.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
39
1.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 9 R ( ) (1) — Welch (WBS) 2024 9 R ( ) (1) — Welch — 2024-11 – p.1/10
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 9 R ( ) (1) — Welch —
2024-11 – p.2/10
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 9 R ( ) (1) — Welch — 2024-11 – p.3/10
t Welch R t.test() Welch Welch 2024 9 R (
) (1) — Welch — 2024-11 – p.4/10
2 t ( ) (1/2) 2 ( ) xA −
xB (1) : (2) : σ ( ) σ sp sp = s2 A (nA − 1) + s2 B (nB − 1) nA + nB − 2 (R var() ) nA + nB − 2 t Welch A B (µA = µB ) A B (µA = µB ) 2024 9 R ( ) (1) — Welch — 2024-11 – p.5/10
2 t ( ) (2/2) xA − xB Student µA
= µB t = (xA − xB ) − (µA − µB ) sp 1 nA + 1 nB = xA − xB sp 1 nA + 1 nB (t ) t dfp = nA + nB − 2 t ( ) t0.05 (dfp ) t0.05 (dfp ) < |t| (P < 0.05) 2024 9 R ( ) (1) — Welch — 2024-11 – p.6/10
Welch t t = xA − xB s2 A nA
+ s2 B nB ( ) v . . . v ≈ ( s2 A nA + s2 B nB )2 s4 A n2 A (nA−1) + s4 B n2 B (nB−1) R 2024 9 R ( ) (1) — Welch — 2024-11 – p.7/10
( ) - (Shapiro-Wilk test) - (Anderson-Darling test for normality)
- (Kolmogorov-Smirnov test for normality) ( ) ( ) (Bartlett’s test for homogeneity of variances) 2024 9 R ( ) (1) — Welch — 2024-11 – p.8/10
.txt A /B g <- read.table(" .txt", header=T) colnames(g) <-
c(" ", " ") sampleA <- g$ sampleB <- g$ # ( ) shapiro.test(x=sampleA) shapiro.test(x=sampleB) # ( ) samples <- c(sampleA, sampleB) group_factor <- factor(rep(c("A", "B"), c(length(sampleA), length(sampleB)))) bartlett.test(formula=samples~group_factor) # Welch (t.test() ) ( Welch ) t.test(sampleA, sampleB) 2024 9 R ( ) (1) — Welch — 2024-11 – p.9/10
2024 9 R ( ) (1) — Welch — 2024-11
– p.10/10