Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (su...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Kenji Saito
PRO
November 30, 2024
Technology
0
73
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第9回で使用したスライドです。
Kenji Saito
PRO
November 30, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
アナログAI からの逃走とメタ・ネイチャーポジティブ / Escape from Analog AI, and Meta-Nature Positive
ks91
PRO
0
4
AI 前提社会におけるトラスト / Trust in an AI-Driven Society
ks91
PRO
0
14
非営利組織の起業/発表と総括 / Starting up a Nonprofit Organization, Presentation and Summary
ks91
PRO
0
57
自己開発 / Self-Development
ks91
PRO
1
22
あなたは何によって憶えられたいですか? / What Do You Want to be Remembered for?
ks91
PRO
0
28
ボランティアと理事会 / Volunteers and Board of Directors
ks91
PRO
0
48
メタ・ネイチャーポジティブへの道 / The Path to Meta Nature Positive
ks91
PRO
0
35
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 3 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 3
ks91
PRO
0
52
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
87
Other Decks in Technology
See All in Technology
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
配列に見る bash と zsh の違い
kazzpapa3
3
160
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
190
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
320
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
Featured
See All Featured
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
200
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
The Curse of the Amulet
leimatthew05
1
8.7k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
The SEO Collaboration Effect
kristinabergwall1
0
350
Believing is Seeing
oripsolob
1
56
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Accessibility Awareness
sabderemane
0
53
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
The Language of Interfaces
destraynor
162
26k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 9 R ( ) (1) — Welch (WBS) 2024 9 R ( ) (1) — Welch — 2024-11 – p.1/10
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 9 R ( ) (1) — Welch —
2024-11 – p.2/10
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch • 10 R ( ) (2) — χ2 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 9 R ( ) (1) — Welch — 2024-11 – p.3/10
t Welch R t.test() Welch Welch 2024 9 R (
) (1) — Welch — 2024-11 – p.4/10
2 t ( ) (1/2) 2 ( ) xA −
xB (1) : (2) : σ ( ) σ sp sp = s2 A (nA − 1) + s2 B (nB − 1) nA + nB − 2 (R var() ) nA + nB − 2 t Welch A B (µA = µB ) A B (µA = µB ) 2024 9 R ( ) (1) — Welch — 2024-11 – p.5/10
2 t ( ) (2/2) xA − xB Student µA
= µB t = (xA − xB ) − (µA − µB ) sp 1 nA + 1 nB = xA − xB sp 1 nA + 1 nB (t ) t dfp = nA + nB − 2 t ( ) t0.05 (dfp ) t0.05 (dfp ) < |t| (P < 0.05) 2024 9 R ( ) (1) — Welch — 2024-11 – p.6/10
Welch t t = xA − xB s2 A nA
+ s2 B nB ( ) v . . . v ≈ ( s2 A nA + s2 B nB )2 s4 A n2 A (nA−1) + s4 B n2 B (nB−1) R 2024 9 R ( ) (1) — Welch — 2024-11 – p.7/10
( ) - (Shapiro-Wilk test) - (Anderson-Darling test for normality)
- (Kolmogorov-Smirnov test for normality) ( ) ( ) (Bartlett’s test for homogeneity of variances) 2024 9 R ( ) (1) — Welch — 2024-11 – p.8/10
.txt A /B g <- read.table(" .txt", header=T) colnames(g) <-
c(" ", " ") sampleA <- g$ sampleB <- g$ # ( ) shapiro.test(x=sampleA) shapiro.test(x=sampleB) # ( ) samples <- c(sampleA, sampleB) group_factor <- factor(rep(c("A", "B"), c(length(sampleA), length(sampleB)))) bartlett.test(formula=samples~group_factor) # Welch (t.test() ) ( Welch ) t.test(sampleA, sampleB) 2024 9 R ( ) (1) — Welch — 2024-11 – p.9/10
2024 9 R ( ) (1) — Welch — 2024-11
– p.10/10