Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190420_chainer_handson_cource03
Search
keisuke umezawa
April 19, 2019
Technology
1
840
20190420_chainer_handson_cource03
keisuke umezawa
April 19, 2019
Tweet
Share
More Decks by keisuke umezawa
See All by keisuke umezawa
ChainerRLとマインクラフトで深層強化学習ハンズオン
kumezawa
0
150
Chainer 初学者向けハンズオン
kumezawa
1
3.5k
Deep Learningでリアルタイムに マーケット予測をしてみた
kumezawa
1
930
Other Decks in Technology
See All in Technology
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
OpenShiftでllm-dを動かそう!
jpishikawa
0
130
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
140
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
360
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
5k
How STYLIGHT went responsive
nonsquared
100
6k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
100
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
76
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Everyday Curiosity
cassininazir
0
130
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Transcript
Chainer Beginner's Hands-on Course #03 Preferred Networks / Chainer Evangelist
Keisuke Umezawa twitterのハッシュタグは #chug_jp でお願いします
自己紹介 2 •梅澤 慶介 • 金融マーケット予測モデルの研究開発 @AlpacaJapan • Chainer Evangelist
@Preferred Networks • Twitter:@kmechann • GitHub:@keisuke-umezawa
Alpaca Forecast AI Prediction Matrix 3 •最近、Bloombergアプリとしてリリースした金融商品予測システム •30分後に価格が上がるか下がるか予測する
Agenda 1. Chainer Beginner's Hands-on Course について 2. Chainer/CuPyの紹介 3.
本日のハンズオンの内容 4
Chainer Beginner's Hands-on Course 5
概要 6 •Chainerを使って、Googleの提供するColaboratoryで演習をする無料ハ ンズオンコースです。 •随時、コンテンツを追加する予定です。 https://chainer-colab-notebook.readthedocs.io/ja/latest/begginers_hands_on.html
コース全体を通した目標 7 •Deep Learningフレームワークに必要な構成要素とChainerによる実装を 説明できる •モデルの評価に必要な機械学習の手法を実践できる •CNN、RNNなど基本的なネットワークを使ったモデルを実装できる •画像処理、自然言語処理などの応用分野の問題をChainerで解くことが できる •実際に作成したモデルを使って、アプリケーションを作ることができる
今後の予定 8 •次回は6月頃に開催する予定
Chainer/CuPyの紹介 9
Chainer •Chainerとは (http://chainer.org/) •Preferred Networks製Deep Learningフレームワーク 10
Chainer 11 •Google社製TensorFlowなどの同類
CuPy 12 ChainerにおけるGPU計算を全て担当するライブラリが独立 NumPy互換APIで低コストにCPUコードをGPUへ移行 特異値分解などの線形代数アルゴリズムをGPU実行 KMeans, Gaussian Mixture ModelなどのExampleの充実 import
numpy as np x = np.random.rand(10) W = np.random.rand(10, 5) y = np.dot(x, W) import cupy as cp x = cp.random.rand(10) W = cp.random.rand(10, 5) y = cp.dot(x, W) GPU https://github.com/cupy/cupy
拡大するChainerファミリー 13 Chainer UI Chainer Chemistry 強化学習 画像認識 可視化 グラフ構造
大規模分散 Menoh 推論特化
最近のできごと(1): Chainer Tutorials の公開 •Chainerだけでなく、数学やPythonの基礎〜機械学習・ディープラーニン グの基礎・コーディング・応用まで幅広く解説。 •全章をColab上で実行可能なJupyterノートブックとして配布中 14 https://tutorials.chainer.org/ja/
最近のできごと(2): ChainerX 公開 •自動微分可能なNumPy-likeな ndarrayをC++で実装することに より以下を達成 • 高速化 • 多様なデバイスに対応
• python以外の言語でdeploy可 能 15
本日のハンズオンの内容 16
前回の内容 17 •Chainer入門 • 畳み込みニューラルネットワークについて学習すること • 過学習・汎化性能を理解すること • Chainerの機能について学習すること
今回の内容 18 •Chainerでkaggleの問題を解こう! • 好きなデータセットをChainerで使えるように変換し、モデルの訓練・推論を行 うこと • Kaggleを例題に、より応用的な画像識別の問題を解くこと • fine-tuningをして、画像識別の問題を解くこと
• ChainerCVを使って、Data Augumentationをすること
chug (Chainer User Group)の紹介 19
Chainer User Groupの紹介 •Slack chainer-jp https://bit.ly/join-chainer-jp-slack •Twitter @chug_jp •活動内容 •Meetup・ハンズオンの開催
•Chainerに関する情報・ドキュメントの拡充 •Web チュートリアルの作成 •一緒に活動できる方を募集しています! Slack #chug-jp-management に是非 20
アンケート http://bit.ly/chainer-handson03
None