$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190420_chainer_handson_cource03
Search
keisuke umezawa
April 19, 2019
Technology
1
840
20190420_chainer_handson_cource03
keisuke umezawa
April 19, 2019
Tweet
Share
More Decks by keisuke umezawa
See All by keisuke umezawa
ChainerRLとマインクラフトで深層強化学習ハンズオン
kumezawa
0
150
Chainer 初学者向けハンズオン
kumezawa
1
3.5k
Deep Learningでリアルタイムに マーケット予測をしてみた
kumezawa
1
920
Other Decks in Technology
See All in Technology
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
440
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
200
AI with TiDD
shiraji
1
270
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
5
2k
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
260
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
200
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
240
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.1k
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
202512_AIoT.pdf
iotcomjpadmin
0
140
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
400
Featured
See All Featured
Navigating Weather and Climate Data
rabernat
0
52
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
45
Prompt Engineering for Job Search
mfonobong
0
120
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
29
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Technical Leadership for Architectural Decision Making
baasie
0
180
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
28
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
97
The browser strikes back
jonoalderson
0
120
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Transcript
Chainer Beginner's Hands-on Course #03 Preferred Networks / Chainer Evangelist
Keisuke Umezawa twitterのハッシュタグは #chug_jp でお願いします
自己紹介 2 •梅澤 慶介 • 金融マーケット予測モデルの研究開発 @AlpacaJapan • Chainer Evangelist
@Preferred Networks • Twitter:@kmechann • GitHub:@keisuke-umezawa
Alpaca Forecast AI Prediction Matrix 3 •最近、Bloombergアプリとしてリリースした金融商品予測システム •30分後に価格が上がるか下がるか予測する
Agenda 1. Chainer Beginner's Hands-on Course について 2. Chainer/CuPyの紹介 3.
本日のハンズオンの内容 4
Chainer Beginner's Hands-on Course 5
概要 6 •Chainerを使って、Googleの提供するColaboratoryで演習をする無料ハ ンズオンコースです。 •随時、コンテンツを追加する予定です。 https://chainer-colab-notebook.readthedocs.io/ja/latest/begginers_hands_on.html
コース全体を通した目標 7 •Deep Learningフレームワークに必要な構成要素とChainerによる実装を 説明できる •モデルの評価に必要な機械学習の手法を実践できる •CNN、RNNなど基本的なネットワークを使ったモデルを実装できる •画像処理、自然言語処理などの応用分野の問題をChainerで解くことが できる •実際に作成したモデルを使って、アプリケーションを作ることができる
今後の予定 8 •次回は6月頃に開催する予定
Chainer/CuPyの紹介 9
Chainer •Chainerとは (http://chainer.org/) •Preferred Networks製Deep Learningフレームワーク 10
Chainer 11 •Google社製TensorFlowなどの同類
CuPy 12 ChainerにおけるGPU計算を全て担当するライブラリが独立 NumPy互換APIで低コストにCPUコードをGPUへ移行 特異値分解などの線形代数アルゴリズムをGPU実行 KMeans, Gaussian Mixture ModelなどのExampleの充実 import
numpy as np x = np.random.rand(10) W = np.random.rand(10, 5) y = np.dot(x, W) import cupy as cp x = cp.random.rand(10) W = cp.random.rand(10, 5) y = cp.dot(x, W) GPU https://github.com/cupy/cupy
拡大するChainerファミリー 13 Chainer UI Chainer Chemistry 強化学習 画像認識 可視化 グラフ構造
大規模分散 Menoh 推論特化
最近のできごと(1): Chainer Tutorials の公開 •Chainerだけでなく、数学やPythonの基礎〜機械学習・ディープラーニン グの基礎・コーディング・応用まで幅広く解説。 •全章をColab上で実行可能なJupyterノートブックとして配布中 14 https://tutorials.chainer.org/ja/
最近のできごと(2): ChainerX 公開 •自動微分可能なNumPy-likeな ndarrayをC++で実装することに より以下を達成 • 高速化 • 多様なデバイスに対応
• python以外の言語でdeploy可 能 15
本日のハンズオンの内容 16
前回の内容 17 •Chainer入門 • 畳み込みニューラルネットワークについて学習すること • 過学習・汎化性能を理解すること • Chainerの機能について学習すること
今回の内容 18 •Chainerでkaggleの問題を解こう! • 好きなデータセットをChainerで使えるように変換し、モデルの訓練・推論を行 うこと • Kaggleを例題に、より応用的な画像識別の問題を解くこと • fine-tuningをして、画像識別の問題を解くこと
• ChainerCVを使って、Data Augumentationをすること
chug (Chainer User Group)の紹介 19
Chainer User Groupの紹介 •Slack chainer-jp https://bit.ly/join-chainer-jp-slack •Twitter @chug_jp •活動内容 •Meetup・ハンズオンの開催
•Chainerに関する情報・ドキュメントの拡充 •Web チュートリアルの作成 •一緒に活動できる方を募集しています! Slack #chug-jp-management に是非 20
アンケート http://bit.ly/chainer-handson03
None