Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Learning with Fenchel-Young Losses
Search
Han Bao
June 10, 2020
Science
0
380
Learning with Fenchel-Young Losses
I read the paper "Learning with Fenchel-Young Losses" (JMLR2020):
https://arxiv.org/abs/1901.02324
Han Bao
June 10, 2020
Tweet
Share
Other Decks in Science
See All in Science
My Little Monster
juzishuu
0
550
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
140
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
530
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
凸最適化からDC最適化まで
santana_hammer
1
350
(2025) Balade en cyclotomie
mansuy
0
450
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
260
データマイニング - コミュニティ発見
trycycle
PRO
0
200
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
500
力学系から見た現代的な機械学習
hanbao
3
3.9k
Featured
See All Featured
For a Future-Friendly Web
brad_frost
182
10k
Producing Creativity
orderedlist
PRO
348
40k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
68
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Why Our Code Smells
bkeepers
PRO
340
58k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Transcript
-FBSOJOHXJUI 'FODIFM:PVOH-PTTFT $SFBUFECZ)BO#BP 1I%BU65PLZP$4 <#MPOEFM .BSUJOTBOE/JDVMBF+.-3>
8IBUJTMPTTGVODUJPOT ˙ .FBTVSJOHEJ⒎FSFODFCFUXFFOUBSHFUBOEQSFEJDUJPO ⾣ &YBNQMFSFHSFTTJPO ⾣ &YBNQMFCJOBSZDMBTTJpDBUJPO
yf(x) ℓ(yf(x)) DPSSFDU XSPOH y − f(x) ℓ(y − f(x)) NBLJOH DMPTFSUP TRVBSFEMPTT )VCFSMPTT f(x) y NBLJOH FRVBMUP MPTT MPHJTUJDMPTT IJOHFMPTT sign( f(x)) sign(y)
'FODIFM:PVOH-PTT %FpOJUJPO-FU CFBlQSFEJDUJPOzSFHVMBSJ[FS Ω : ℝd → ℝ
LΩ (θ; y) := Ω⋆(θ) + Ω(y) − ⟨θ, y⟩ QSFEJDUJPO TDPSF ∈ ℝd UBSHFUMBCFM ∈ dom(Ω) 'FODIFMDPOKVHBUF Ω⋆(θ) := sup μ∈dom(Ω) ⟨θ, μ⟩ − Ω(μ) 8IBUPOUIFFBSUIEPFTJUNFBO 1PUFOUJBMRVFTUJPOT UPCFBOTXFSFE 28IBUJTlQSFEJDUJPOzSFHVMBSJ[FS 28IZEPXFOFFESFHVMBSJ[BUJPOPGQSFEJDUJPO 28IZJTUIFMPTTEFpOFEBTBCPWF
1JQFMJOFPG4VQFSWJTFE-FBSOJOH *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF ℝd x θ ̂ y
QBSBNFUSJ[FENPEFM fW QSFEJDUJPOGVODUJPO ̂ yΩ 0.821 1.215 ⋮ 5.382 ⋮ −1.012 0 0 ⋮ 1 ⋮ 0 ∈ %// fW BSHNBY ̂ yΩ *OQVU 4DPSF 0VUQVU &YBNQMF DMBTTJpDBUJPO IPUWFDT
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ Δ3
BSHNBY ˙ DIPPTJOHBWFSUFY USBDUBCMF
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ Δ3
BSHNBY ˙ DIPPTJOHBWFSUFY USBDUBCMF OPOVOJRTPMVUJPO Δ3 BSHNBY
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ Δ3
BSHNBY ˙ DIPPTJOHBWFSUFY USBDUBCMF OPOVOJRTPMVUJPO Δ3 BSHNBY OPOEJ⒎FSFOUJBCMF OPVODFSUBJOUZ
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ
TPGUNBY ˙ SFHVMBSJ[FUPXBSETDFOUFS argmax y∈Δd ⟨θ, y⟩
+ HS (y) = exp θi ∑d j=1 exp θj i PSEJOBSZFYQSFTTJPO 1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ
TPGUNBY ˙ SFHVMBSJ[FUPXBSETDFOUFS argmax y∈Δd ⟨θ, y⟩
+ HS (y) = exp θi ∑d j=1 exp θj i PSEJOBSZFYQSFTTJPO 1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ EJ⒎FSFOUJBCMF VODFSUBJOUZ TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ
TPGUNBY ˙ SFHVMBSJ[FUPXBSETDFOUFS argmax y∈Δd ⟨θ, y⟩
+ HS (y) = exp θi ∑d j=1 exp θj i PSEJOBSZFYQSFTTJPO 1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ EFOTFTVQQPSU GPSMBSHF JTJOUSBDUBCMF ∑d j=1 d EJ⒎FSFOUJBCMF VODFSUBJOUZ TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ ˙ &VDMJEFBOQSPKFDUJPOUPXBSETTJNQMFY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 = argmax y∈Δd ∥y − θ∥2 UFOEUPCFTQBSTF
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ ˙ &VDMJEFBOQSPKFDUJPOUPXBSETTJNQMFY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 = argmax y∈Δd ∥y − θ∥2 UFOEUPCFTQBSTF EDBTF EFOTF TQBSTF Δ2
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ ˙ &VDMJEFBOQSPKFDUJPOUPXBSETTJNQMFY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 = argmax y∈Δd ∥y − θ∥2 UFOEUPCFTQBSTF EDBTF EFOTF TQBSTF Δ2 EDBTF Δ3 EFOTF TQBSTF
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ ˙ &VDMJEFBOQSPKFDUJPOUPXBSETTJNQMFY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 = argmax y∈Δd ∥y − θ∥2 UFOEUPCFTQBSTF EDBTF EFOTF TQBSTF Δ2 EDBTF Δ3 EFOTF TQBSTF ⾣ QPJOUTJO ˠEFOTFQSPK ⾣ PUIFSXJTFˠTQBSTFQSPK ⾣ JTGBSTNBMMFSUIBOℝd
1SFEJDUJPO'VODUJPOT BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ TQBSTFNBY USBDUBCMF TUJMMJUEFQFOET EJ⒎FSFOUJBCMF VOJRVFTPMVUJPO TQBSTFTVQQPSU ˠJOUFSQSFUBCMF ˙ &VDMJEFBOQSPKFDUJPOUPXBSETTJNQMFY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 = argmax y∈Δd ∥y − θ∥2
l3FHVMBSJ[FEz1SFEJDUJPO BSHNBY argmax y∈Δd ⟨θ, y⟩ TPGUNBY argmax y∈Δd
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 5TBMMJT FOUSPQZ %FpOJUJPO-FU CFBSFHVMBSJ[FS 5IFQSFEJDUJPOGVODUJPOSFHVMBSJ[FECZ JT Ω : ℝd → ℝ Ω ̂ yΩ (θ) = argmax y∈dom(Ω) ⟨θ, y⟩ − Ω(y) QSFEJDUJPO TDPSF ∈ ℝd NBLFTQSFEJDUJPO BQBSUGSPNWFSUJDFT CFBXBSFEJ⒎FSFOU GSPNVTVBMSFHVMBSJ[BUJPO Loss( fW ) + λ∥W∥2 F
'VSUIFS4USVDUVSFE1SFEJDUJPO UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU &YBNQMF4FRVFODFMBCFMJOH 0VUQVUTQBDFDPOTJTUTPGTUSVDUVSFEPCKFDUTTVDIBTHSBQIT * MPWF MPTT GVODUJPOT /
/ / / 7 / / / 7 / / / ʜ ʜ JOQVUx PVUQVU DBOETy ʜ ʜ TDPSFTθ MFOHUIn 7 / + ʜ TJ[Fm TFUPGMBCFMT QSPCBCJMJUZ TJNQMFY
'VSUIFS4USVDUVSFE1SFEJDUJPO UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU &YBNQMF4FRVFODFMBCFMJOH 0VUQVUTQBDFDPOTJTUTPGTUSVDUVSFEPCKFDUTTVDIBTHSBQIT * MPWF MPTT GVODUJPOT /
/ / / 7 / / / 7 / / / ʜ ʜ JOQVUx PVUQVU DBOETy ʜ ʜ TDPSFTθ MFOHUIn 7 / + ʜ TJ[Fm TFUPGMBCFMT FYQPOFOUJBM || = mn QSPCBCJMJUZ TJNQMFY
'VSUIFS4USVDUVSFE1SFEJDUJPO UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU &YBNQMF-JOFBSBTTJHONFOU FHMJTUXJTFSBOLJOH 0VUQVUTQBDFDPOTJTUTPGTUSVDUVSFEPCKFDUTTVDIBTHSBQIT JOQVUx PVUQVU DBOETy
ʜ ʜ TDPSFTθ #JSLIP⒎ QPMZUPQF EPD EPD EPD EPD PGEPDTn ʜ ʜ
'VSUIFS4USVDUVSFE1SFEJDUJPO UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU &YBNQMF-JOFBSBTTJHONFOU FHMJTUXJTFSBOLJOH 0VUQVUTQBDFDPOTJTUTPGTUSVDUVSFEPCKFDUTTVDIBTHSBQIT JOQVUx PVUQVU DBOETy
ʜ ʜ TDPSFTθ #JSLIP⒎ QPMZUPQF EPD EPD EPD EPD PGEPDTn FYQPOFOUJBM || = n! ʜ ʜ
'VSUIFS4USVDUVSFE1SFEJDUJPO ˙ -PXEJNFOTJPOBMJOIFSFOUTUSVDUVSFFYJTUT UIP JTFYQPOFOUJBMMZMBSHF
˙ &YBNQMF4FRVFODFMBCFMJOH ⾣ "TTVNQJOQVUXPSENBUUFST ⾣ "TTVNQQSFWMBCFMNBUUFST || UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU x1 x2 x3 x4 y1 y2 y3 y4 *OQVUTQBDF 4DPSFTQBDF x θ NPEFM fW -PXEJN TDPSFTQBDF η MJOFBSUSBOT M QSPCMFNEFQFOEFOU 㱺MPXEJNTUSVDUVSFO(nm2) XJEFMZVTFEJOMJOFBSDIBJO$3'T
'VSUIFS4USVDUVSFE1SFEJDUJPO ."1JOGFSFODF argmax y∈conv() ⟨θ, y⟩ NBSHJOBMJOGFSFODF argmax y∈conv()
⟨θ, y⟩ + HS (y) 4IBOOPO FOUSPQZ 4QBSTF."1 argmax y∈conv() ⟨θ, y⟩ + H2 (y) 5TBMMJT FOUSPQZ UIJTQBSUKVTUNPUJWBUFTSFHVMBSJ[BUJPOGVSUIFSZPVNBZTLJQJU USBDUBCMF OPVODFSUBJOUZ OPEJ⒎FSFOUJBUJPO EJ⒎FSFOUJBCMF VODFSUBJOUZ PGUFO JOUSBDUBCMF EFOTFTVQQPSU EJ⒎FSFOUJBCMF VODFSUBJOUZ USBDUBCMF 'SBOL8PMGF TQBSTFTVQQPSU 3FNBSL TQBSTFNBYEPFTOPUVUJMJ[F MPXEJNTUSVDUVSF 3FNBSL5SBDUBCJMJUZ TFRVFODFMBCFMJOH."1 7JUFSCJ NBSHJOBMBSF MJOBTTJHO."1 )VOHBSJBO JT NBSHJOBMJT1DPNQ O(nm2) O(n3)
)PXUPEFTJHOMPTT *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2
)PXUPEFTJHOMPTT *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 UBSHFUMBCFM y
)PXUPEFTJHOMPTT *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y) TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 UBSHFUMBCFM y 2)PXUPNFBTVSF
)PXUPEFTJHOMPTT TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y)
TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 1SFEJDUJPOGVODUJPO -PTTGVODUJPO
)PXUPEFTJHOMPTT TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y)
TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 1SFEJDUJPOGVODUJPO -PTTGVODUJPO DSPTTFOUSPQZ log∑ i exp θi − θk UBSHFUDMBTT
)PXUPEFTJHOMPTT TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y)
TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 1SFEJDUJPOGVODUJPO -PTTGVODUJPO DSPTTFOUSPQZ log∑ i exp θi − θk UBSHFUDMBTT 28IZJUJTHPPE
)PXUPEFTJHOMPTT TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y)
TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 1SFEJDUJPOGVODUJPO -PTTGVODUJPO DSPTTFOUSPQZ log∑ i exp θi − θk UBSHFUDMBTT ʁʁʁ 28IZJUJTHPPE
)PXUPEFTJHOMPTT TPGUNBY argmax y∈Δd ⟨θ, y⟩ + HS (y)
TQBSTFNBY argmax y∈Δd ⟨θ, y⟩− 1 2 ∥y∥2 2 1SFEJDUJPOGVODUJPO -PTTGVODUJPO DSPTTFOUSPQZ log∑ i exp θi − θk UBSHFUDMBTT ʁʁʁ 28IZJUJTHPPE 2)PXUPEFTJHO
'FODIFM:PVOH-PTT %FpOJUJPO-FU CFBlQSFEJDUJPOzSFHVMBSJ[FS Ω : ℝd → ℝ
LΩ (θ; y) := Ω⋆(θ) + Ω(y) − ⟨θ, y⟩ QSFEJDUJPO TDPSF UBSHFUMBCFM 'FODIFMDPOKVHBUF Ω⋆(θ) := sup μ∈dom(Ω) ⟨θ, μ⟩ − Ω(μ) 5XPLFZQSPQFSUJFT ˙ ':MPTTJTOPOOFHBUJWF ˙ DPSSFDUQSFE J⒎[FSPMPTT y = ̂ yΩ (θ)
'FODIFM:PVOH-PTT %FpOJUJPO-FU CFBlQSFEJDUJPOzSFHVMBSJ[FS Ω : ℝd → ℝ
LΩ (θ; y) := Ω⋆(θ) + Ω(y) − ⟨θ, y⟩ QSFEJDUJPO TDPSF UBSHFUMBCFM 'FODIFMDPOKVHBUF Ω⋆(θ) := sup μ∈dom(Ω) ⟨θ, μ⟩ − Ω(μ) 5XPLFZQSPQFSUJFT ˙ ':MPTTJTOPOOFHBUJWF ˙ DPSSFDUQSFE J⒎[FSPMPTT y = ̂ yΩ (θ) .JOJNJ[JOH':MPTTNBLFTQSFEJDUJPODMPTFUPUBSHFUMBCFM
'FODIFM:PVOH-PTT %FpOJUJPO-FU CFBlQSFEJDUJPOzSFHVMBSJ[FS Ω : ℝd → ℝ
LΩ (θ; y) := Ω⋆(θ) + Ω(y) − ⟨θ, y⟩ QSFEJDUJPO TDPSF UBSHFUMBCFM 'FODIFMDPOKVHBUF Ω⋆(θ) := sup μ∈dom(Ω) ⟨θ, μ⟩ − Ω(μ) 5XPLFZQSPQFSUJFT ˙ ':MPTTJTOPOOFHBUJWF ˙ DPSSFDUQSFE J⒎[FSPMPTT y = ̂ yΩ (θ) .JOJNJ[JOH':MPTTNBLFTQSFEJDUJPODMPTFUPUBSHFUMBCFM 1SPPG6TF'FODIFM:PVOHJOFRVBMJUZ Ω⋆(θ) + Ω(y) ≥ {⟨θ, y⟩ − Ω(y)} + Ω(y) = ⟨θ, y⟩
(FPNFUSJDBM*OUFSQSFUBUJPO Ω(y) y μ 'PSSFHVMBSJ[FS
(FPNFUSJDBM*OUFSQSFUBUJPO Ω(y) y μ 'PSSFHVMBSJ[FS ̂ yΩ (θ) ESBXUBOHFOU
BU CZEFGPG'FODIFMDPOKVHBUF ̂ yΩ (θ) ⟨θ, μ⟩ − Ω⋆(θ)
(FPNFUSJDBM*OUFSQSFUBUJPO Ω(y) y μ 'PSSFHVMBSJ[FS ̂ yΩ (θ) ESBXUBOHFOU
BU CZEFGPG'FODIFMDPOKVHBUF ̂ yΩ (θ) ⟨θ, μ⟩ − Ω⋆(θ) ⟨θ, y⟩ − Ω⋆(θ) −Ω⋆(θ)
(FPNFUSJDBM*OUFSQSFUBUJPO Ω(y) y μ 'PSSFHVMBSJ[FS ̂ yΩ (θ) ESBXUBOHFOU
BU CZEFGPG'FODIFMDPOKVHBUF ̂ yΩ (θ) ⟨θ, μ⟩ − Ω⋆(θ) ⟨θ, y⟩ − Ω⋆(θ) −Ω⋆(θ) LΩ (y; θ) -PTTJTEJTUBODFCFUXFFO BOE BU #SFHNBOEJWFSHFODF y
&YBNQMF4IBOOPO&OUSPQZ HS (y) = − d ∑ j=1 yj
log yj ̂ yHS (θ) = argmax y∈Δd ⟨θ, y⟩ − HS (y) = exp θ ∑d j=1 exp θj TPGUNBY θ ̂ y(θ) CJOBSZTPGUNBYTJHNPJE LHS (θ; y) = H⋆ S (θ) + HS (y) − ⟨θ, y⟩ = log d ∑ j=1 exp θj − θk BTTVNJOHy = ek DSPTTFOUSPQZ JTMPHJTUJDMPTTJOCJOBSZDBTF LHS ( ̂ yHS (θ); y)
&YBNQMF5TBMMJT&OUSPQZ H2 (y) = 1 2 d ∑ j=1
yj (1 − yj ) Hα (y) = 1 α(α − 1) d ∑ j=1 (yj − yα j ) HS (y) = − d ∑ j=1 yj log yj 5TBMMJTFOUSPQZ α α → 2 α → 1 BLB(JOJJOEFY 4IBOOPOFOUSPQZ TQBSTFNBY θ ̂ y(θ) m ℓ(m) TQBSTFNBYMPTT H⋆ 2 (θ) + H2 (y) − ⟨θ, y⟩ NPEJpFE)VCFSMPTT TQFDJBMJ[FEJOCJOBSZDMBTTJpDBUJPO
0UIFS/JDF1SPQFSUZ 0WFSWJFX ˙ 4FQBSBUJPONBSHJO j j BpOJUFTDPSFBUUBJOT[FSPMPTT JG JTlTQBSTFz
˙ $BMJCSBUFETVSSPHBUF j NJOJNJ[JOH':MPTTMFBETUPNJOJNJ[JOHDMBTTJpDBUJPOFSSPS NPSFEJTDVTTJPOJTOFFEFEGPSTUSVDUVSFEQSFEJDUJPO ˙ &⒏DJFOUPQUJNJ[BUJPO j BMXBZTDPOWFYCZOBUVSFPQUJNJ[BCMFXJUI'SBOL8PMGFBMHPSJUIN JUFSBUJWFMZNJOJNJ[JOHMJOFBSBQQSPY Ω m ℓ(m) MPHJTUJD 4IBOOPO WBOJTIFTBU 㱣OPTFQNHO TQBSTFNBY 5TBMMJT TFQNHO m ℓ(m) 㱺OPQFOBMJ[BUJPOPOMBSHFFOPVHIQSFEJDUJPONBSHJOT
4VNNBSZ *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y UBSHFUMBCFM y
4VNNBSZ *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y UBSHFUMBCFM y ̂ yΩ (θ) = argmax y∈dom(Ω) ⟨θ, y⟩ − Ω(y) 3FHVMBSJ[FEQSFEJDUJPO NBLFTQBSTF USBDUBCMF ʜ
4VNNBSZ *OQVUTQBDF 4DPSFTQBDF 0VUQVUTQBDF x θ fW ̂ yΩ
QSFEJDUJPO ̂ y UBSHFUMBCFM y ̂ yΩ (θ) = argmax y∈dom(Ω) ⟨θ, y⟩ − Ω(y) 3FHVMBSJ[FEQSFEJDUJPO NBLFTQBSTF USBDUBCMF ʜ LΩ (θ; y) := Ω⋆(θ) + Ω(y) − ⟨θ, y⟩ 'FODIFM:PVOHMPTT TZTUFNBUJDXBZDPOTUSVDUJOHMPTTGSPNΩ