Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
XP祭り2019 実践!モブプログラミング!!~導入編~/How to install mob...
Search
Ikuo Suyama
September 21, 2019
Technology
0
280
XP祭り2019 実践!モブプログラミング!!~導入編~/How to install mob programming to your organization
XP祭り2019、「実践!モブプログラミング!!成功も失敗も、全部見せます僕らのモブプロジャーニー!」
前編です。
Ikuo Suyama
September 21, 2019
Tweet
Share
More Decks by Ikuo Suyama
See All by Ikuo Suyama
A Journey as Staff Engineer at SmartNews! 〜一年間の経験から語る、ICキャリアの今とこれから〜
martin_lover
1
840
[zh-TW] DevOpsDays Taipei 2025 -- Creating Awesome Change in SmartNews!(machine translation)
martin_lover
1
1.2k
DevOpsDays Taipei 2025 -- Creating Awesome Change in SmartNews!
martin_lover
1
630
Creating Awesome Change in SmartNews! En
martin_lover
0
160
Creating Awesome Change in SmartNews
martin_lover
2
900
Dive into JVM JIT Compiler
martin_lover
2
260
InvokeDynamic完全に理解した / Completely Understand InvokeDynamic
martin_lover
0
1k
10分で完全に理解するInvokeDynamic / 10min To Understand InvokeDynamic
martin_lover
0
870
High Performance FastAPI EN
martin_lover
0
1.2k
Other Decks in Technology
See All in Technology
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
340
MLflowダイエット大作戦
lycorptech_jp
PRO
1
140
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
390
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
140
学習データって増やせばいいんですか?
ftakahashi
2
340
ChatGPTで論⽂は読めるのか
spatial_ai_network
9
28k
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
270
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
160
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
11
9.1k
regrowth_tokyo_2025_securityagent
hiashisan
0
250
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
因果AIへの招待
sshimizu2006
0
980
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
50
14k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Statistics for Hackers
jakevdp
799
230k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Building Adaptive Systems
keathley
44
2.9k
Practical Orchestrator
shlominoach
190
11k
Site-Speed That Sticks
csswizardry
13
1k
Designing for Performance
lara
610
69k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Building an army of robots
kneath
306
46k
Transcript
࣮ફʂϞϒϓϩάϥϛϯάʂʂ ޭࣦഊɺશ෦ݟͤ·͢ ΒͷϞϒϓϩδϟʔχʔʂ ~ ಋೖฤ ~ 1
2
3
4
5
6
ʮ࣮ફʂϞϒϓϩάϥϛϯάʂʂ ~༂ਐฤ~ʯ ݟʹདྷͯͶʂ Aձ 14:25 ~ !! 7
Ͳ͏ͬͯϞϒϓϩΛ (νʔϜ|৫) ʹ σϓϩΠ͔ͨ͠ʁ 8
͡·Γͷॴ... 9
Ϟϒϓϩ͖͡ΌΜʁ ʮϞϒϓϩ͍͢͝ʂ ϞϒϓϩͰΓ͍ͨʂʯ 10
৽͍͠ΞΠσΞΛಋೖ͢Δ ͨΊʹɺͦͷΞΠσΞʹ͔͚ ΔͰɺ͋ͳͨࣗ৴Λಥ ͖ಈ͔ͦ͏ɻ — FEARESS CHANGE 1. ΤόϯδΣϦετ 11
νʔϜΛר͖ࠐΉ 12
͓ࢼ͔͠Β࢝ΊΔ • ͍͖ͳΓͯ͢ͷΓํΛม͑Α͏ͱ͠ͳ͍ • ։ൃ߹॓ ͳͲɺಛผͳػձΛԋग़͢Δ • ྑ͞ΛνʔϜʹཧղͯ͠Β͏ • ଞਓ͕ಉ͡ՁΛײ͡Δʹ
͕͔͔࣌ؒΔ • LODEOͰʙ̍Ґʁ ΈΜͳͰʮָ͠Ήʯͷ͕͍ͩ͡ʂ 13
ΧϯόϯΛ࢝ΊΔ • ΧϯόϯͱϞϒϓϩ૬ੑ͕ྑ͍ • WIPΛ੍ݶ͢Δޱ࣮ • ϓϧܕϦʔυλΠϜΛνʔϜͷՁʹ ͳͥϞϒϓϩ͕ྑ͍͔ʁ ͕આ໌͘͢͠ͳΔ 14
ظؒΛܾΊͯϑϧλΠϜ • ʮ͓ࢼ͠Ͱʂʯʮ࣮ݧͰʂʯ • ͱΓ͋͑ͣҰϲ݄ϑϧλΠϜϞϒ • ಛʹ൱ఆతͳҙݟग़ͳ͔ͬͨ Ͱ... 15
ࣗൃతʹ࢝·Βͳ͍ ຖʮϞϒΖ͏ʂʯ ͱ Slack Ͱ͔͚ 16
͜ͷࠒ͕Ұ൪ͭΒ͔ͬͨ ʮඞཁͱ͞Εͯ ͳ͍Μ͡Όͳ͍͔... ʁʯ 17
Ұϲ݄ͷ͓ࢼ͠ظؒͷޙ... ωΨςΟϒͳҙݟ͕ग़ ʮ͜Ε͕σϑΥϧτʹͳΓͦ͏ʯ ʮϞϒ͡Όͳ͍ͱͰ͖ͳ͘ͳΓͦ͏ʯ ʮͬͺΓҰਓͰΓ͍ͨʯ 18
ϞϒϓϩΛΕΔ 19
͠Βͯ͘͠... 20
݁ہϞϒϓϩʹͬͨʂ • ʮͬͺΓҰਓΑΓϞϒͷ΄͏͕ྑ͔ͬͨʯ • ேདྷͨΒ ԿݴΘͳͯ͘ Ϟϒ͕࢝·Δ • νʔϜશһ͕ϞϒͷՁΛཧղͯ͘͠Ε͍ͯΔ ͜ͷࠒ͔Β໌Β͔ʹ
ࣄָ͕͘͠ͳͬͨʂ 21
ͳͥϞϒʹͬͨΜͩΖ͏ʁ • ಛʹಇ͖͔͚͠ͳ͔ͬͨ • ڧ੍͠ͳ͔ͬͨͷྑ͔ͬͨ • ड͚ೖΕΒΕͨͷӡ͋ͬͨ(࠶ݱੑͳ͍͔...) • νʔϜ͔ΒΕΔਓ͍ͨ νʔϜ͕ʮࣗൃతʹʯϞϒʹͬͨ
ͳʹ͔ྑ͖͜ͱΛݟ͚ͭͨΑ͏ʹײ͡Δʂ 22
Ϙε† Λઆಘ͢Δ † ΤϯδχΞϦϯάϚωδϟʔ 23
࢝ΊΔͱ͖ɿ৴པஷۚΛ͏ • ৽͍͜͠ͱΛ࢝Ί͍ͨͱ͖ʹ͍ͩ͡ • ʮࣗΛฉ͘ʹՌΛ͍ͯ͠Δ͔ʁʯ • ͍ͬͯͯ͘ɺ৴པؔް͔ͬͨ ̎ͷՌͱ৴པஷۚͷೖʂ 24
νʔϜͷঢ়ଶͷྑ͞Λ͑Δ νʔϜʹྑ͍Өڹ͕ඞͣݱΕΔ • Ξτϓοτͷ্࣭͕͕Δɺૣ্͕͕͞Δ • ίϛϡχέʔγϣϯ͕૿͑ɺงғؾ͕ྑ͘ͳΔ • ࣄָ͕͘͠ͳΔʂΤϯήʔδϝϯτˢ Ξϐʔϧ͠ͳͯ͘ΘΔʂ 25
σϦήʔγϣϯϙʔΧʔ • Ͳ͜·Ͱ͕ࣗͷൣғ͔ʁΛೝࣝ߹Θͤ͢Δ • ಉ࣌ʹɺ্࢘ʹظ͢ΔׂΛ͑Δ • ʮͳͥΔ͔ʁʯʮԿ͕ྑ͍͔ʁʯઆ໌ͨ͠ ʮ։ൃͷਐΊํͤΔʯ ·Ͱ৴པΛಘͨ 26
ϏδωεΛઆಘ͢Δ 27
μϚͰΔ • ՌΛग़ͣͯ͞͠ྑ͞Λૌ͑Δͷࠔ • ཧ۶ΑΓ·ͣՌ <-> Βͳ͚ΕՌग़ͳ͍ • χϫτϦλϚΰΛղফ͢Δ •
ͨͩ͠ ظؒΛ͘ ΕඞͣՌग़Δͱ৴ͯ͡ʂʂ μϝͳΒΰϝϯφαΠ͢Δ 28
ՌΛΞϐʔϧ͢Δ • ૣ͘ಧ͚Δ • ʮ̍ϲ݄͔͔͍ͬͯͨͷ͕̍पؒʹʂʯ • ͙͢ʹɺఆظతʹ͑Δ • པ·Ε͔ͯΒϨϏϡʔʹग़͢·Ͱͷ࣌ؒ •
ϑΟʔυόοΫΛड͚͔ͯΒө·Ͱͷ࣌ؒ ʮૣ͞ʯʹΑΔ Ϗδωε༏ҐੑΛΞϐʔϧʂ 29
ྑ͘ͳ͍ಉ࣌ʹ͑Δ ʮΞτϓοτͷ૯ྔݮΓ·͢ʯ 30
ʮ͑ɺޮѱ͘ͳ͍...ʁʯ 31
...༂ਐฤʂ 32
·ͱΊ • ͔Β࢝·Δ • ਏ๊ڧ͘Δ • ਓΛר͖ࠐΉͷ͕͔͔࣌ؒΔ • ࣗͷྔ͕ߴ͍΄ͲɺԹࠩʹ৺͕ંΕ͕ͪ •
ଓ͚͍ͯΔͱཧղͯ͘͠ΕΔਓͨͪʹग़ձ͑Δ(͔) • આ໌ΛՌͨ͢ • TO ϘεϏδωεɺεςʔΫϗϧμʔ 33
ʮ࣮ફʂϞϒϓϩάϥϛϯάʂʂ ~༂ਐฤ~ʯ ݟʹདྷͯͶʂ Aձ 14:25 ~ !! 34
Thank you For Your kind Attention!! 35