Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[読み会]Teaching Categories to Human Learners with...
Search
mei28
May 18, 2021
0
30
[読み会]Teaching Categories to Human Learners with Visual Explanations
読み会資料
Teaching Categories to Human Learners with Visual Explanations (CVPR 2018)
mei28
May 18, 2021
Tweet
Share
More Decks by mei28
See All by mei28
[Human-AI Decision Making勉強会] 説明を部分的に見せることで人に考えさせ、AIへの不適切な依存を減らす
mei28
0
86
[読み会] CHI2025論文紹介
mei28
1
55
[読み会] “Are You Really Sure?” Understanding the Effects of Human Self-Confidence Calibration in AI-Assisted Decision Making
mei28
0
140
[JSAI'24] 人間の判断根拠は文脈によって異なるのか?〜信頼されるXAIに向けた人間の判断根拠理解〜
mei28
2
750
[CHI'24] Fair Machine Guidance to Enhance Fair Decision Making in Biased People
mei28
0
100
[DEIM2024] 卓球の得点予測における重要要素の分析
mei28
0
59
[Human-AI Decision Making勉強会] 意思決定 with AIは個人vsグループで変わるの?
mei28
0
250
[読み会] Words are All You Need? Language as an Approximation for Human Similality Judgements
mei28
0
68
[参加報告] AAAI'23
mei28
0
130
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The SEO identity crisis: Don't let AI make you average
varn
0
39
The agentic SEO stack - context over prompts
schlessera
0
560
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
110
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
200
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
The Pragmatic Product Professional
lauravandoore
37
7.1k
Transcript
Teaching Categories to Human Learners with Visual Explanations ಡΈձ@2021/05/18 ༶໌
•ը૾ྨͰػցڭࣔΛߦ͏ͱ͖ʹɼͲ͜ݟΔ͖͔ͷઆ໌Λ ͯ͠ਓؒͷύϑΥʔϚϯεΛ͋͛ͨΑʂ ͻͱ͜ͱͰ͍͏ͱ ػցڭࣔ × ը૾
•ஶऀ: •Oisin Mac Aodha, Shihan Su, Yuxin Chen, Pietro
Person, Yisong Yue •California Institute of Technology •ग़య: CVPR 2018 •ͳΜͰಡΜ͔ͩ?: ࠷৽ͷػցڭࣔΛΩϟονΞοϓ͍͔ͨ͠Β จใ
•ܭࢉػ͕ิॿ͢Δڭҭ → ݸਓ͝ͱʹಛԽͰ͖ΔΑ͏ʹͳ͍ͬͯ Δɽ •ֶݴޠڭҭͰɼશࣗಈͰߦ͑ΔΑ͏ʹͳΓͭͭ͋Δ •͔͠͠ɼઐతͳ(ҩֶͱ͔)ͰະͩͰ͖ͳ͍ •υϝΠϯࣝΛڭ͑Δͷ͕͍͠ Πϯτϩ
•ΫϥυιʔγϯάͷϫʔΧΛڭҭ͢Δ͜ͱ͕ඞཁ •ઐՈΛ͑Δͷʹίετ͕͔͔Γ੍͔ͭݶ͕͋Δ •ڭҭͰ͖ͨΒߴ࣭ͳσʔληοτ͕࡞ΕΔ •΄͔ͷυϝΠϯʹରͯ͠ਓؒͷ൚Խྗ͕ద༻Ͱ͖Δ͔? Πϯτϩ
•୯७ʹਖ਼ղϥϕϧͱαϯϓϧΛฦ͢ •͚Ͳ͜ΕͰຊʹ͍͍ͷʁ܇࿅Ͱ͖ͯΔͷʁʁ •આ໌Λ༩ֶͯ͠शޮՌΛߴΊΔ Πϯτϩ ͜Ε·ͰͷػցڭࣔͲ͏ͳͷʁ
ఏҊ: Interpretable Visual Teaching ༻ޠͷఆٛΛ͍ͯ͘͠Α : ೖྗը૾ X :
ਖ਼ղϥϕϧ Y :Ծઆू߹ அج४ͷू߹ H
•Ծઆ: ֶशࡁΈϞσϧͦͷͷɽೖྗۭ͔ؒΒग़ྗू߹ͷؔ •Ծઆू߹: Ծઆ͕ू·͍ͬͯΔͷ. MLΞϧΰϦζϜͰ࡞ΒΕΔ Մೳੑͷ͋ΔϞσϧͷू·Γ •Ծઆू߹ͷதʹ͋ΔਅͷԾઆ ʹ͚͍ۙͮͯ͘ͷ͕త h⋆
ఏҊख๏ ͪΐͬͱৄ͘͠
Title Text
• ͳը૾ू߹ ʹରֶͯ͠शऀͷԾઆ มԽ͢Δ Ծઆ ͷࣄޙ: ਪ࣌: T ⊂
X T h h P(h ∣ T) ∝ P(h) ∏ xt ∈ T yt ≠ ̂ yh t P (y t ∣ h, x t) P (y t ∣ h, x t) = 1 1 + exp ( −αh (xt) yt) ఏҊख๏ STRICTΞϧΰϦζϜ: Կ͠ͳͱ͖ͷ ճʹର͢Δ ֬৴
•ߋ৽ࣜ࣍ͷΑ͏ʹม͑Δ •৽͘͠2ͭͷݮਰ߲ΛՃ͢Δ ఏҊख๏ EXPLAINΞϧΰϦζϜ: ϑΟʔυόοΫΛߟ͑Δͱ͖ P(h ∣ T) ∝
P(h) ∏ xt ∈ T yt ≠ ̂ yh t P (y t ∣ h, x t)∏ x t ∈T ( E (e t) D (x t))
•આ໌ͷ࣭ը૾ͷ͠͞ͱಉ͡Α͏ʹଌΕͳ͍ɽ •ը૾ͷқఆڥքͱͷڑͰܭࢉͰ͖Δ •ࣗಈੜ͢Δํ๏͋ͱͰग़ͯ͘ΔΑ ఏҊख๏ EXPLAINΞϧΰϦζϜ: Modeling Explanations E (e
t) = 1 1 + exp ( −β diff (et)) ը૾ ʹର͢Δ༩͑ΒΕͨ આ໌ ͷ͠͞ x t e t
•αϯϓϧtͷઆ໌ Λ࡞Γ͍ͨ •Ϋϥυιʔγϯάͱ͔ઐՈͱ͔ʹͬͯΒ͏ͱ͔͋Δ͚ͲࣗಈͰ࡞ ΕΔͱΑ͘ͳ͍ʁ •CNNͷClass Activation MappingʹΑͬͯࣗಈͰઆ໌Λ࡞Δ e t
ఏҊख๏ EXPLAINΞϧΰϦζϜ: ࣗಈੜ e(j) = ∑ k wk c fk j (x) + b c
•͖ͬ͞ఆٛͨ͠ը૾ͷઆ໌߹͍͔Βɼը૾ͷқΛఆٛ •ࣗಈͰઆ໌Λੜ͢Δ࣌ͷϞσϧͱͯ͠ResNetϕʔεͷϞσϧ Λར༻ ఏҊख๏ EXPLAINΞϧΰϦζϜ: ը૾ͷઆ໌ੑˠқͷఆٛ diff(e) = −
1 J ∑ j e(j)log(e(j))
•ैདྷᩦཉʹޡࠩ࠷খΛ࠷దԽ → ඞͣ͠༗ӹͰͳ͍ •ೳಈֶशʹώϯτΛಘͯɼΫϥεͷදྫΛఏࣔ • ʹͳΔͱSTRICTͱಉ͡ʹͳΔ β, γ →
∞ ఏҊख๏ EXPLAINΞϧΰϦζϜ: Modeling Representativeness D (x t) = 1 1 + exp ( −γ dist (xt)) ଞͷը૾ͱൺͯ ͲΕ͘Β͍Ε͍ͯΔ͔ dist (x t) = 1 N N ∑ n=1 x t − x n 2 2
•ڭࡐू߹ ͰͳʹΛબ͢Δ͔ → ֶशऀͷޡࠩΛݮΒ͍ͨ͠ •Ծઆ ʹରͯ͠ɼ؍ଌՄೳͳσʔλͱͷޡࠩΛ࣍ͷΑ͏ʹఆٛ T h ఏҊख๏
Teaching Algorithm: ͲͷαϯϓϧΛఏࣔ͢Δ͔ʁ err c (h) = x : ( ̂ yh ≠ y c ∧ y = y c) ∨ ( ̂ yh = y c ∧ y ≠ y c) | | .
•ޡࠩͷظ͕Ұ൪େ͖ܰ͘ݮͰ͖ΔΑ͏ͳू߹Λબ •͜ͷRΛ࠷େʹ͢ΔΑ͏ͳू߹T͕ཉ͍͠ڭࡐू߹ •͔͠͠ɼٻΊΔͷྼϞδϡϥੑ͔Βࠔ •ྑ͍αϯϓϧΛ1ͭͣͭՃ͍ͯ͘͠ ఏҊख๏ ڭࡐू߹ͷબ R(T) = 1
C ∑ c ( [err c (h)] − [err c (h) ∣ T]) = 1 C ∑ c∈ ∑ h∈ℋ (P c (h) − P c (h ∣ T)) err c (h) খ͘͞ͳΔ΄Ͳ خ͍͠ x t = argmax x R(T ∪ {x})
•3ͭͷσʔληοτΛ༻͍ͯ༗ޮੑΛ֬ೝ͍ͯ͘͠ɽ 1. Butterflies (ࣝผ) 2. OCT Eyes (ບஅ) 3.
Chinese Characters (จࣈࣝผ) ࣮ݧ σʔληοτ
•Amazon Mechanical TurkͰඃݧऀ40ਓ •ࢼը૾ϥϯμϜʹఏࣔͯ͠ɼબճͷॱ൪ϥϯμϜʹ •ҐஔʹΑΔόΠΞεΛͳ͍ͯ͘͠Δɽ •ର߅ख๏ •RAND_IM: ϥϯμϜʹը૾ͱਖ਼ղϥϕϧ •RAND_EXP:
ϥϯμϜը૾ͱͦͷઆ໌ •STRICT: ͍͍ײ͡ͷը૾Λબ͢Δ ࣮ݧઃఆ ͪΐͬͱৄࡉʹ
࣮ݧઃఆ ػցڭࣔͷྲྀΕ
࣮ݧ݁Ռ Butterfly ਖ਼ͷώετάϥϜ ͕ӈʹγϑτ͍ͯ͠Δ ͜ͷσʔληοτ͍͠ ࣅͨ3छࠞཚ͕ͪ͠
࣮ݧ આ໌ը૾ͷΠϝʔδ: Butterfly
࣮ݧ݁Ռ OCT Eyes ਖ਼ͷώετάϥϜ ͕ӈʹγϑτ͍ͯ͠Δ ϥϯμϜͰ্ ͯ͠͠·ͬͯΔ
࣮ݧ આ໌ը૾ͷΠϝʔδ: OCT Eyes
࣮ݧ݁Ռ Chinese Character CNNͷઆ໌͕ࣦഊ͠ ͍ͯΔ खಈͷઆ໌͕ ੑೳྑ͍
࣮ݧ આ໌ը૾ͷΠϝʔδ: Chinese Character
•ࢹ֮తઆ໌ੑΛը૾ʹ༩͑ͯͦΕΛͱʹػցڭࣔΛߦͳͬͯ ͍͘ɽ •ैདྷͷਖ਼ղϥϕϧ͚ͩڭ͑Δํ๏ΑΓɼઆ໌͕͋Δํֶ͕शޮ Ռ͕ߴ͘ɼ͞ΒʹޮՌͷߴ͍ڭࡐू߹Λݟ͚ͭΕ͍ͯΔɽ •কདྷతʹΦϯϥΠϯͰΠϯλϥΫςΟϒʹΓ͍ͨΑͶ ·ͱΊ ը૾આ໌͖ػցڭࣔ