Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[DEIM2024] 卓球の得点予測における重要要素の分析
Search
mei28
March 01, 2024
0
35
[DEIM2024] 卓球の得点予測における重要要素の分析
DEIM2024の発表資料
卓球の得点予測における重要要素の分析
mei28
March 01, 2024
Tweet
Share
More Decks by mei28
See All by mei28
[読み会] “Are You Really Sure?” Understanding the Effects of Human Self-Confidence Calibration in AI-Assisted Decision Making
mei28
0
64
[JSAI'24] 人間の判断根拠は文脈によって異なるのか?〜信頼されるXAIに向けた人間の判断根拠理解〜
mei28
1
440
[CHI'24] Fair Machine Guidance to Enhance Fair Decision Making in Biased People
mei28
0
49
[Human-AI Decision Making勉強会] 意思決定 with AIは個人vsグループで変わるの?
mei28
0
190
[読み会] Words are All You Need? Language as an Approximation for Human Similality Judgements
mei28
0
33
[参加報告] AAAI'23
mei28
0
86
[計算機構論] Learning Models of Individual Behavior in Chess
mei28
0
69
[計算機構論] Why do tree-based models still outperform deep learning on tabular data?
mei28
0
49
チーム開発と機械学習
mei28
0
51
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
500
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
BBQ
matthewcrist
85
9.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Fireside Chat
paigeccino
34
3.1k
Adopting Sorbet at Scale
ufuk
74
9.2k
Designing Experiences People Love
moore
139
23k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Transcript
ٿͷಘ༧ଌʹ͓͚Δॏཁཁૉͷੳ *1౦ژେֶɹ*2ΦϜϩϯαΠχοΫΤοΫεגࣜձࣾɹ*3खֶӃେֶ ༶໌*1, 2 ڮຊರ࢙*2 അՈℙ*2 ຊాलਔ*3 ాதҰහ*2 DEIM2024 ୈ16ճσʔλֶͱใϚωδϝϯτʹؔ͢ΔϑΥʔϥϜ
Track 5: ߴͳσʔλར׆༻ɾυϝΠϯԠ༻ʢҩྍใɺڭҭɺཧใʣ[T5-A-9-02]
എܠʛεϙʔπͷσʔλੳ͕Μ w༷ʑͳεϙʔπͰউརͷͨΊʹεϙʔπσʔλੳ͕ߦΘΕ͍ͯΔ 3 αοΧʔ ςχε • ಘঢ়گϓϨʔ༰͔Βಘ༧ଌ[2] B A A
B • બखͷҐஔ Ϙʔϧͷಈ͖͔ΒධՁ [1] <>%FDSPPT 5 "DUJPOTTQFBLMPVEFSUIBOHPBMT7BMVJOHQMBZFSBDUJPOTJOTPDDFS*O1SPDFFEJOHTPGUIFUI"$.4*(,%%JOUFSOBUJPOBMDPOGFSFODFPOLOPXMFEHFEJTDPWFSZEBUBNJOJOH <>.JDIBM4JQLP .BDIJOFMFBSOJOHGPSUIFQSFEJDUJPOPGQSPGFTTJPOBMUFOOJTNBUDIFT *NQFSJBM$PMMFHF-POEPO 7PM
എܠʛϓϨʔͨ͠ੳΛߦ͏ wٿɺҰఆͷಘΛઌʹऔΔͨΊɺ̍ϓϨʔ͝ͱͷಘ֫ಘ͕ॏཁ wςχεɿ wಘ͕૯͕େ͖͍ํ͕༗ར<>ɹ wࢼ߹શମͷઓज़ͷΞυόΠεʹ͔͠ͳΒͳ͍ɻ 4
എܠʛબखͷߦಈҙਤʹ 5 • ࢼ߹ͷಘঢ়گ • αʔϒݖͷ༗ແ • બखͷଧٿҐஔɹͳͲ طଘݚڀ →֎෦͔Β؍ଌՄೳͳಛྔΛར༻
طଘͷಛྔ ʴ બखͷߦಈҙਤ ຊݚڀ → બखͷ෦ঢ়ଶʹ બखͷ৺ཧঢ়ଶઓज़తͳҙਤ͕ϓϨʔʹө͞ΕΔ
ຊݚڀͷత wٿͷಘ֫ಘʹ͓͚Δॏཁཁૉͷੳ wػցֶशϞσϧΛར༻͠ɺσʔλ͔ΒԿ͕ॏཁͰ͔͋ͬͨΛੳ wબखͷߦಈҙਤΛಛྔͱͯ͠ར༻͠ɺಘʹӨڹΛ༩͍͑ͯΔͷ͔Λ֬ೝ 6
ར༻͢Δσʔληοτ wશຊٿબखݖͷࢼ߹ө૾ࢼ߹Λར༻ wө૾͔Βಘঢ়گͳͲͷಛྔΛ࡞ wαʔόʔΛىʹͨ͠ಛྔʹม 7 ಛྔ໊ ༰ 4FU ࢼ߹ͷԿήʔϜ͔ 1MBZ
ಉήʔϜͰԿຊͷϥϦʔ͔ /SBMMZ0SEFSFE ݱࡏͷଧٿ͕αʔϒ͔ΒԿଧ͔ 4DPSF4UBUVT'SPN4FSWFS ݱࡏͷαʔόʔͷಘঢ়گ 4DPSF4UBUVT'SPN3FDJFWFS ݱࡏͷϨγʔόʔͷಘঢ়گ 4DPSF4UBUVT%J⒎#JOBSZ αʔόʔͱϨγʔόͷಘࠩ "UUBDL-BCFMT'SPN4FSWFS ଧٿʹ߈ܸҙਤ͕͋Δ͔Ͳ͏͔
߈कϥϕϧʮϓϨʔͷҙਤ͕ಘͷͨΊʹ߈ܸతͰ͋Δ͔൱͔ʯ wࢼ߹ͷ͏ͪࢼ߹ΛΞϊςʔγϣϯɻͲͷબख͕߈Ί͍ͯΔ͔൱͔ͷ̐ΫϥεΛઃఆ wଧٿ̍ͭ̍ͭʹ༩͢ΔͨΊɺશͯʹΞϊςʔγϣϯΛ༩͢Δͷࠔ w̎ਓͷΞϊςʔγϣϯͷҰகͱߴ͍ wਓؒʹΑΔ߈कϥϕϧߴ͍Ұக͕ୡՄೳ 8 αʔϒΛͨ͠બखͷ ͜ͷଧٿ ಘͷͨΊʹ ߈Ί͍ͯΔ
ٖࣅ߈कϥϕϧͷ࡞ wΓͷࢼ߹ʹ͍ͭͯ-JHIU(#.ͷ༧ଌ݁ՌΛಛྔͱͯ͠ར༻ 9 ࢼ߹ঢ়گಛྔ ߈कϥϕϧ -JHIU(#. ਪఆͨ͠ ߈कϥϕϧ -JHIU(#. -JHIU(#.
-JHIU(#. -JHIU(#. ɾɾɾ ɾɾɾ Ұ෦ͷ߈कϥϕϧΛ༻͍ͯ ٖࣅతʹ߈कϥϕϧΛਪఆ ϥϦʔͷଧຖʹ Ϟσϧͷֶशͱ༧ଌ ֶशͨ͠ϞσϧʹΑΔ ಛྔॏཁ } ਓ͕ؒ࡞ͨ͠߈कϥϕϧʢ5ࢼ߹ʣ } ϞσϧʹͰਪఆٖͨ͠ࣅ߈कϥϕϧ ʢ40ࢼ߹ʣ
࣮ݧʛࢼ߹ঢ়گͱ߈कϥϕϧ͔Βಘ༧ଌ wత wಘ֫ಘͷͨΊʹ֤ϓϨʔͰͷॏཁཁૉͷੳ w߈कϥϕϧ͕ಘ֫ಘ༧ଌʹͯΔӨڹʹ͍ͭͯͷੳ wϞσϧʹ-JHIU(#.Λར༻ wߴ͍ਫ਼͕ୡՄೳ͔ͭɺಛྔॏཁͷࢉग़͕Մೳ wϞσϧͲͷબख͕ಘ͢Δ͔Λ༧ଌ 10 ಛྔ ߈कϥϕϧ
-JHIU(#. -JHIU(#. -JHIU(#. -JHIU(#. ɾɾɾ ɾɾɾ ͷ߈कϥϕϧΛ༻͍ͯ తʹ߈कϥϕϧΛਪఆ ϥϦʔͷଧຖʹ Ϟσϧͷֶशͱ༧ଌ ֶशͨ͠ϞσϧʹΑΔ ಛྔॏཁ
࣮ݧʛ̍ଧ͝ͱͷϓϨʔʹ wαʔϒ͔ΒԿଧͷϓϨʔͰ͋Δ͔ͰσʔληοτΛׂ w֤ଧ͝ͱʹϞσϧΛಠֶཱͯ͠श 11 ࢼ߹ঢ়گಛྔ ߈कϥϕϧ -JHIU(#. ਪఆͨ͠ ߈कϥϕϧ -JHIU(#.
-JHIU(#. -JHIU(#. -JHIU(#. ɾɾɾ ɾɾɾ Ұ෦ͷ߈कϥϕϧΛ༻͍ͯ ٖࣅతʹ߈कϥϕϧΛਪఆ ϥϦʔͷଧຖʹ Ϟσϧͷֶशͱ༧ଌ ֶशͨ͠ϞσϧʹΑΔ ಛྔॏཁ 1ଧͷΈ 6ଧҎ߱ͷۮଧ 5ଧҎ߱ͷحଧ 2ଧ ࢼ߹ใσʔληοτ
࣮ݧ݁Ռʛٖࣅ߈कϥϕϧͷਫ਼ wਓखʹΑΔ߈कϥϕϧΛਖ਼ղͱͯ͠ɺަࠩݕূͰ൚ԽੑೳΛධՁ w༧ଌਫ਼ɺ w߈कϥϕϧαʔόʔɺϨγʔόʔͷ߈कͷछྨͷͨΊ ϥϯμϜΑΓߴ͍༧ଌਫ਼ wҎ߱ͷ࣮ݧͰ༻͍Δ߈कϥϕϧɺ͜ͷϞσϧͷ༧ଌ݁ՌΛ༻͍Δɻ 12
࣮ݧ݁Ռʛ߈कϥϕϧͷ༗ແʹΑΔ༧ଌਫ਼ͷҧ͍ w߈कϥϕϧΛՃ͢Δ͜ͱͰɺ༧ଌਫ਼ͷ্Λ֬ೝ wϞσϧ༧ଌʹ͓͍ͯ߈कϥϕϧ͕ӨڹΛ༩͍͑ͯΔ 13 ༧ଌରͷଧʢ݅ʣ ߈कϥϕϧͳ͠ ߈कϥϕϧ͋Γ ଧٿɿαʔϒʢ݅ʣ
ଧٿɿϨγʔϒʢ݅ʣ ଧٿʢ݅ʣ ଧٿʢ݅ʣ ଧٿҎ߱ͷحଧʢ݅ʣ ଧٿҎ߱ͷۮଧʢ݅ʣ
࣮ݧ݁ՌʛϞσϧͷಛྔॏཁ wϨγʔόʔͷଧٿʢ̎ ଧʣͰॏཁʹͳΔ wˠϨγʔόϓϨʔͷੑ্࣭ෆརͳͨΊɺ߈ܸͷҙਤ͕ಘ֫ಘʹॏཁ 14 Ұଧ ೋଧʢϨγʔϒʣ ࡾଧʢࡾٿ߈ܸʣ ࢛ଧ ଧҎ߱ͷحଧ
ଧҎ߱ͷۮଧ ಛྔॏཁ ಛྔॏཁ ಛྔॏཁ ಛྔॏཁ ಛྔॏཁ ಛྔॏཁ ॏཁ͕ߴ͍ॱͷ߱ॱ
ຊݚڀͷ·ͱΊ wٿʹ͓͚Δಘ༧ଌͷͨΊͷಛྔͱͯ͠ ɹબखͷҙਤΛөͨ͠߈कϥϕϧʹ w߈कϥϕϧΛར༻͢Δ͜ͱͰɺϞσϧͷ༧ଌਫ਼ͷ্ʹ༗༻Ͱ͋ͬͨ wϨγʔόʔ͕߈ܸ͢ΔҙਤΛग़͢͜ͱɺಘ֫ಘͷॏཁཁૉͰ͋Δͱࣔࠦ wࠓޙɺબखͷҙਤ͚ͩͰͳ͘ɺબखͷٿઓུͱΈ߹Θͤͯ ɹಘ༧ଌʹର͢ΔӨڹΛௐࠪ 15
ຊݚڀͷ·ͱΊ wٿʹ͓͚Δಘ༧ଌͷͨΊͷಛྔͱͯ͠ ɹબखͷҙਤΛөͨ͠߈कϥϕϧʹ w߈कϥϕϧΛར༻͢Δ͜ͱͰɺϞσϧͷ༧ଌਫ਼ͷ্ʹ༗༻Ͱ͋ͬͨ wϨγʔόʔ͕߈ܸ͢ΔҙਤΛग़͢͜ͱɺಘ֫ಘͷॏཁཁૉͰ͋Δͱࣔࠦ wࠓޙɺબखͷҙਤ͚ͩͰͳ͘ɺબखͷٿઓུͱΈ߹Θͤͯ ɹಘ༧ଌʹର͢ΔӨڹΛௐࠪ 16
ิʛ߈कϥϕϧͷ࡞ํ๏ʹΑΔҧ͍ wϞσϧ༧ଌʹΑΔ༩ͷํ͕ɺ ɹ࠷ऴతͳಘ༧ଌʹྑ͍ӨڹΛ༩͑Δɻ wϥϯμϜܽଛͷ··Ͱ ɹ߈कϥϕϧແ͠ΑΓਫ਼͕ ɹߴ͘ͳΔ͕͋Δ 17