Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Dynamique(s) de descente pour l'optimisation mu...

Avatar for GdR MOA 2015 GdR MOA 2015
December 02, 2015

Dynamique(s) de descente pour l'optimisation multi-objectif

by G. Garrigos

Avatar for GdR MOA 2015

GdR MOA 2015

December 02, 2015
Tweet

More Decks by GdR MOA 2015

Other Decks in Science

Transcript

  1. Dynamique(s) de descente pour l’optimisation multi-objectif Guillaume Garrigos, Hédy Attouch

    Istituto Italiano di Tecnologia & Massachusetts Institute of Technology Genoa, Italie Journées du GdR MOA 2 Décembre, 2015 Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 1/19
  2. Introduction/Motivation Multi-objective problem In engineering, decision sciences, it happens that

    various objective functions shall be minimized simultaneously: f1, ..., fm Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 2/19
  3. Introduction/Motivation Multi-objective problem In engineering, decision sciences, it happens that

    various objective functions shall be minimized simultaneously: f1, ..., fm −→ Needs appropriate tools: multi-objective optimization. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 2/19
  4. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz, H Hilbert. Solve MIN (f1(x), ..., fm(x)) : x ∈ C ⊂ H convex. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 3/19
  5. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz, H Hilbert. Solve MIN (f1(x), ..., fm(x)) : x ∈ C ⊂ H convex. We consider the usual order(s) on Rm: a ĺ b ⇔ ai ≤ bi for all i = 1, ..., m, a ă b ⇔ ai < bi for all i = 1, ..., m. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 3/19
  6. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz, H Hilbert. Solve MIN (f1(x), ..., fm(x)) : x ∈ C ⊂ H convex. We consider the usual order(s) on Rm: a ĺ b ⇔ ai ≤ bi for all i = 1, ..., m, a ă b ⇔ ai < bi for all i = 1, ..., m. x is a Pareto point if y ∈ C such that F(y) ň F(x) x is a weak Pareto point if y ∈ C such that F(y) ă F(x) Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 3/19
  7. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. How to solve it? Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  8. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. How to solve it? genetic algorithm −→ no theoretical guarantees. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  9. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. How to solve it? genetic algorithm −→ no theoretical guarantees. scalarization method: minimize fθ := m i=1 θi fi , θ = (θi )i=1..m ∈ ∆m because θ∈∆m argmin x∈H fθ(x) ⊂ {weak Paretos}. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  10. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. We are going to present a method which: Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  11. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the steepest descent dynamic ˙ x(t) + ∇f (x(t)) = 0, Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  12. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the steepest descent dynamic ˙ x(t) + ∇f (x(t)) = 0, is cooperative, i.e. all objective functions decrease simultaneously, Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  13. The multi-objective optimization problem Let F = (f1, ..., fm)

    : H → Rm locally Lipschitz. Solve MIN f1(x), ..., fm(x) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the steepest descent dynamic ˙ x(t) + ∇f (x(t)) = 0, is cooperative, i.e. all objective functions decrease simultaneously, is independent of any choice of parameters. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 4/19
  14. Towards a descent dynamic for multi-objective optimization Historical review Smale

    (1975) Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 5/19
  15. Towards a descent dynamic for multi-objective optimization Historical review Smale

    (1975) Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 5/19
  16. Towards a descent dynamic for multi-objective optimization Historical review Smale

    (1975) Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 5/19
  17. Towards a descent dynamic for multi-objective optimization Historical review Cornet

    (1981) s(x) := −[∇f1(x), ∇f2(x)]0 s(x), ∇fi (x) < 0 ∇f1(x) ∇f2(x) PhD defense - Guillaume Garrigos 28/30
  18. Multi-objective steepest descent Let F = (f1, ..., fm) :

    H −→ Rm locally Lipschitz, C = H Hilbert. Definition For all x ∈ H, s(x) := − (co {∂Cfi (x)}i=1,...,m)0 is the (common) steepest descent direction at x. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 6/19
  19. Multi-objective steepest descent Let F = (f1, ..., fm) :

    H −→ Rm locally Lipschitz, C = H Hilbert. Definition For all x ∈ H, s(x) := − (co {∂Cfi (x)}i=1,...,m)0 is the (common) steepest descent direction at x. Remarks in the smooth case If m = 1 then s(x) = −∇f1(x). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 6/19
  20. Multi-objective steepest descent Let F = (f1, ..., fm) :

    H −→ Rm locally Lipschitz, C = H Hilbert. Definition For all x ∈ H, s(x) := − (co {∂Cfi (x)}i=1,...,m)0 is the (common) steepest descent direction at x. Remarks in the smooth case If m = 1 then s(x) = −∇f1(x). At each x, s(x) selects a convex combination: s(x) = − m i=1 θi (x)∇fi (x) = −∇fθ(x) (x) where fθ(x) = m i=1 θi (x)fi . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 6/19
  21. Multi-objective steepest descent Let F = (f1, ..., fm) :

    H −→ Rm locally Lipschitz, C = H Hilbert. Definition For all x ∈ H, s(x) := − (co {∂Cfi (x)}i=1,...,m)0 is the (common) steepest descent direction at x. Remarks in the smooth case If m = 1 then s(x) = −∇f1(x). At each x, s(x) selects a convex combination: s(x) = − m i=1 θi (x)∇fi (x) = −∇fθ(x) (x) where fθ(x) = m i=1 θi (x)fi . s(x) is the steepest descent: s(x) s(x) = argmin d∈BH max i=1,...,m ∇fi (x), d . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 6/19
  22. The (multi-objective) Steepest Descent dynamic We consider the continuous steepest

    descent dynamic: (SD) ˙ x(t) = s(x(t)), i.e. (SD) ˙ x(t) + (co {∂Cfi (x(t))}i )0 = 0. A solution is a trajectory x : [0, +∞[−→ H being absolutely continuous (on bounded intervals), satisfying (SD) for a.e. t ≥ 0. It is the continuous version of the steepest descent algorithm studied by Svaiter, Fliege, Iusem, ... Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 7/19
  23. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  24. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  25. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  26. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  27. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  28. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 8/19
  29. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x2 1 and f2(x) = x2 2 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 9/19
  30. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x2 1 and f2(x) = x2 2 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 9/19
  31. The (multi-objective) Steepest Descent dynamic Example (SD) ˙ x(t) =

    s(x(t)) with f1(x) = x2 1 and f2(x) = x2 2 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 9/19
  32. The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou,

    2014) A cooperative dynamic Let x : R+ −→ H be a solution of (SD) ˙ x(t) = s(x(t)). For all i = 1, ..., m, the function t → fi (x(·)) is decreasing. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 10/19
  33. The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou,

    2014) A cooperative dynamic Let x : R+ −→ H be a solution of (SD) ˙ x(t) = s(x(t)). For all i = 1, ..., m, the function t → fi (x(·)) is decreasing. Convergence in the convex case Assume that the objective functions are convex. Then any bounded trajectory weakly converges to a weak Pareto point. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 10/19
  34. The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou,

    2014) A cooperative dynamic Let x : R+ −→ H be a solution of (SD) ˙ x(t) = s(x(t)). For all i = 1, ..., m, the function t → fi (x(·)) is decreasing. Convergence in the convex case Assume that the objective functions are convex. Then any bounded trajectory weakly converges to a weak Pareto point. Existence in the convex case Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (SD). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 10/19
  35. The (multi-objective) Steepest Descent dynamic Going further In case of

    convex constraint C ⊂ H: (SD) ˙ x(t) + (NC (x(t)) + co {∂Cfi (x(t))}i )0 = 0. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 11/19
  36. The (multi-objective) Steepest Descent dynamic Going further In case of

    convex constraint C ⊂ H: (SD) ˙ x(t) + (NC (x(t)) + co {∂Cfi (x(t))}i )0 = 0. Uniqueness? Yes, if {∇fi (x(·))}i=1,...,m are affinely independants. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 11/19
  37. The (multi-objective) Steepest Descent dynamic Going further In case of

    convex constraint C ⊂ H: (SD) ˙ x(t) + (NC (x(t)) + co {∂Cfi (x(t))}i )0 = 0. Uniqueness? Yes, if {∇fi (x(·))}i=1,...,m are affinely independants. Convergence to Pareto points? Guaranteed by endowing Rm with a different order (recall F = (f1, ..., fm) : H −→ Rm). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 11/19
  38. Numerical results Recovering the Pareto front f1(x, y) = x

    + y f2(x, y) = x2 + y2 + 1 x + 3e−100(x−0.3)2 + 3e−100(x−0.6)2 (x, y) ∈ C = [0.1, 1]2 Plot of F(C), F = (f1, f2) : C −→ R2 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 12/19
  39. Numerical results Recovering the Pareto front f1(x, y) = x

    + y f2(x, y) = x2 + y2 + 1 x + 3e−100(x−0.3)2 + 3e−100(x−0.6)2 (x, y) ∈ C = [0.1, 1]2 Plot of F(C), F = (f1, f2) : C −→ R2 and its pareto front. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 12/19
  40. Numerical results Recovering the Pareto front f1(x, y) = x

    + y f2(x, y) = x2 + y2 + 1 x + 3e−100(x−0.3)2 + 3e−100(x−0.6)2 (x, y) ∈ C = [0.1, 1]2 Gradient method (Right) vs Scalar method (Left). 100 samples. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 12/19
  41. Numerical results Pareto selection with Tikhonov penalization Can we select,

    among the weak Paretos (= the zeros of x → s(x)) the closest to a desired state? Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 13/19
  42. Numerical results Pareto selection with Tikhonov penalization Can we select,

    among the weak Paretos (= the zeros of x → s(x)) the closest to a desired state? → Tikhonov penalization Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 13/19
  43. Numerical results Pareto selection with Tikhonov penalization Can we select,

    among the weak Paretos (= the zeros of x → s(x)) the closest to a desired state? → Tikhonov penalization ˙ x(t) − s(x(t)) + ε(t)(x(t) − xd ) = 0, ε(t) ↓ 0, ∞ 0 ε(t) dt = +∞. See the works of Attouch, Cabot, Czarnecki, Peypouquet (...) in the monotone case. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 13/19
  44. Convergence rates : empirical observation ˙ x(t) + ∇f (x(t))

    = 0 ¨ x(t) + γ ˙ x(t) + ∇f (x(t)) = 0 Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 14/19
  45. Convergence rates : empirical observation ˙ x(t) + ∇f (x(t))

    = 0 ¨ x(t) + γ ˙ x(t) + ∇f (x(t)) = 0 Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 14/19
  46. Convergence rates : empirical observation ˙ x(t) + ∇f (x(t))

    = 0 ¨ x(t) + γ ˙ x(t) + ∇f (x(t)) = 0 Inertia promotes Faster trajectories (varying γ(t)), Exploratory properties. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 14/19
  47. Convergence rates : empirical observation f1(x)= 10 i=1 x2 i

    −10cos(2πxi )+10 1 4 , f2(x)= 10 i=1 (xi −1.5)2−10cos(2π(xi −1.5))+10 1 4 Convergence rate of F(xn) − F(x∞) ∞ : Steepest Descent vs Inertial Steepest Descent Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 15/19
  48. Inertial (multi-objective) Steepest Descent Let f1, ..., fm be smooth,

    with L-Lipschitz gradient. (ISD) ¨ x(t) = −γ ˙ x(t) + s(x(t)). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 16/19
  49. Inertial (multi-objective) Steepest Descent Let f1, ..., fm be smooth,

    with L-Lipschitz gradient. (ISD) ¨ x(t) = −γ ˙ x(t) + s(x(t)). Example: f1(x) = x 2 and f2(x) = x1 . Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 16/19
  50. Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015) Let

    f1, ..., fm be smooth, with L-Lipschitz gradient. (ISD) m¨ x(t) = −γ ˙ x(t) + s(x(t)). Assume that γ ≥ L. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 17/19
  51. Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015) Let

    f1, ..., fm be smooth, with L-Lipschitz gradient. (ISD) m¨ x(t) = −γ ˙ x(t) + s(x(t)). Assume that γ ≥ L. Existence Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (ISD). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 17/19
  52. Inertial (multi-objective) Steepest Descent Main results (Attouch, G., 2015) Let

    f1, ..., fm be smooth, with L-Lipschitz gradient. (ISD) m¨ x(t) = −γ ˙ x(t) + s(x(t)). Assume that γ ≥ L. Existence Suppose that H is finite dimensional. Then, for any initial data, there exists a global solution to (ISD). Convergence in the convex case Let f1, ..., fm be convex. Then, any bounded trajectory weakly converges to a weak Pareto point. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 17/19
  53. Conclusion The steepest descent provides a flexible tool once adapted

    to multi-objective optimization problems. Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 18/19
  54. Conclusion The steepest descent provides a flexible tool once adapted

    to multi-objective optimization problems. Open questions: Uniqueness of the trajectories for ˙ x(t) = s(x(t))? Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 18/19
  55. Conclusion The steepest descent provides a flexible tool once adapted

    to multi-objective optimization problems. Open questions: Uniqueness of the trajectories for ˙ x(t) = s(x(t))? Understand the asymptotic behaviour of ˙ x(t) − s(x(t)) + ε(t)x(t) = 0 (the set of weak Paretos is non-convex). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 18/19
  56. Conclusion The steepest descent provides a flexible tool once adapted

    to multi-objective optimization problems. Open questions: Uniqueness of the trajectories for ˙ x(t) = s(x(t))? Understand the asymptotic behaviour of ˙ x(t) − s(x(t)) + ε(t)x(t) = 0 (the set of weak Paretos is non-convex). Having convergence rates for first and second-order dynamics (the critical values are not unique). Journées du GdR MOA 2015 - Dijon - Guillaume Garrigos 18/19