Error bound implies KL Theorem Let f : H → R ∪ {∞} be a proper, convex and lower-semicontinuous, with min f = 0. Let η > 0, ϕ ∈ K(0, η), c > 0, ρ > 0, η ∈ (0, 1) and ¯ x ∈ argmin f. (i) If ∂0f(x) ≥ c|f(x)|θ, ∀x ∈ [0 < f < η] ∩ B(¯ x, ρ), then dist (x, S) ≤ [c(1 − θ)]−1|f(x)|1−θ, ∀x ∈ [0 < f < η] ∩ B(¯ x, ρ). (ii) Conversely, if c|f(x)|1−θ ≥ dist (x, S), ∀x ∈ [0 < f < η] ∩ B(¯ x, ρ), then ∂0f(x) ≥ c−1|f(x)|θ, ∀x ∈ [0 < f < η] ∩ B(¯ x, ρ). Journ´ ees annuelles du GdR MOA, Dijon 12-2015 9/17