Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jan Stępień - Tracking those who Track
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Munich DataGeeks
July 02, 2013
Technology
1
200
Jan Stępień - Tracking those who Track
Talk by Jan Stępień at the firsta Munich DataGeeks Meetup
Data: 02.07.2013
Munich DataGeeks
July 02, 2013
Tweet
Share
More Decks by Munich DataGeeks
See All by Munich DataGeeks
Florian Haselbeck- Advancing Synthetic Protein Design with Large Language Models
munichdatageeks
0
93
Tobias Ladner- Formal Verification of Neural Networks in Safety-Critical Environments
munichdatageeks
0
110
Uladzislau Sazanovich - JetBrains AI: Deep Dive
munichdatageeks
0
94
Jan Hauffa - A Case Study on Retrieval-Augmented Generation for Document Q&A: Experiences and Future Perspectives
munichdatageeks
0
110
Thomas Schmidt - Revolutionizing SQL Data Model Testing: Introducing SQL-Mock by DeepL
munichdatageeks
0
75
Maximilian Duesberg - The Data is Clear - But Humans are not
munichdatageeks
0
110
Dr.Christoph Mittendorf-Beyond Bard and Transformers: Unconventional ML Use Cases
munichdatageeks
0
160
Heidi Seibold - Are (data) scientists bad at science?
munichdatageeks
0
150
Roland Rodde- Vegetation management for powerlines with remote sensing data
munichdatageeks
0
170
Other Decks in Technology
See All in Technology
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.6k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
670
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
420
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
170
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
820
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
Featured
See All Featured
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Navigating Weather and Climate Data
rabernat
0
110
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
How to Think Like a Performance Engineer
csswizardry
28
2.4k
How GitHub (no longer) Works
holman
316
140k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Technical Leadership for Architectural Decision Making
baasie
2
250
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
How to Ace a Technical Interview
jacobian
281
24k
Transcript
Tracking those who track us Jan Stępień
My name is Jan Stępień and I come from Warsaw
Data analysis is not just big data
Data analysis is fun
It all started with ads tracking “like” buttons other irrelevant
things
1. Use an adblock plugin 2. Block all network communication
to unwelcome domains
My machine website.com ads.website.com
My machine website.com ads.website.com
Let’s capture all those requests!
03.2012 – 06.2013 106 414 requests 322 distinct days approx.
330 requests per day
SQLite3 + Incanter + R + Weka
http_if_none_match http_referer http_accept_encoding http_accept http_cookie http_connection http_host http_user_agent http_version path_info
http_accept_charset http_accept_language http_cache_control http_if_modified_since request_method request_path request_uri query_string remote_host remote_addr script_name server_name server_port server_protocol http_dnt timestamp
timestamp
03 04 05 06 07 08 09 10 11 12
01 02 03 04 05 06 15k 10k 5k 0
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19 20 21 22 23 100 0 200 300 400 500
8k 6k 4k 2k 0 Mo Tu We Th Fr
Sa Su
http_host
www.google-analytics.com 36197 static.adzerk.net 13983 edge.quantserve.com 11659 www.facebook.com 9641 ad.doubleclick.net 3822
pagead2.googlesyndication.com 3764 s.youtube.com 2173 b.scorecardresearch.com 1974 pubads.g.doubleclick.net 1465 googleads.g.doubleclick.net 1231
48.9% of requests sent to domains owned by Google
http_referer
22902 distinct referrers 4692 distinct domains
Let’s try to combine this dataset with something else
Weather influence?
ogimet.com Humidity, min/max/avg temperature, cloud coverage, visibility, rain/snow, wind speed/direction,
etc.
No correlations!
Tags at stackoverflow.com
http://stackoverflow.com/questions/123/title
data.stackexchange.com
Thanks, wordle.net!
Can be my WWW traffic grouped into clusters?
1. Group requests into 15 minute intervals 2. Count domains
per interval
5008 intervals Each described by over 4500 values
1. Select request from popular domains 2. Group requests into
15 minute intervals 3. Count domains per interval
5008 intervals Each described by 95 values Only 2% of
cells with non-zero values
Principal Component Analysis 95 domains → 16 descriptors
X-means K-means based clustering algorithm
cluster 0 1268 cluster 1 702 cluster 2 651 cluster
3 2387 What is the meaning behind these clusters?
3 stackoverflow.com
2 reddit.com redditmedia.com bbc.co.uk
1 linkedin.com dictionary.reference.com meetup.com
0 rubyonrails.pl developer.android.com tex.stackexchange.com amazon.com youtube.com
How accurate is this clustering? Let’s build a classifier on
the original data
0 1 2 3 ← classified as 1188 29 11
40 cluster 0 47 654 1 0 cluster 1 10 1 622 18 cluster 2 50 0 18 2319 cluster 3 cluster 0: rubyonrails.pl developer.android.com amazon.com youtube.com cluster 1: linkedin.com dictionary.reference.com meetup.com cluster 2: reddit.com redditmedia.com bbc.co.uk cluster 3: stackoverflow.com
Let’s wrap up
Data analysis is not just big data
Data analysis is fun
Thank you very much The picture of Warsaw is ©
Dennis Jarvis 2009