Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jan Stępień - Tracking those who Track
Search
Munich DataGeeks
July 02, 2013
Technology
1
200
Jan Stępień - Tracking those who Track
Talk by Jan Stępień at the firsta Munich DataGeeks Meetup
Data: 02.07.2013
Munich DataGeeks
July 02, 2013
Tweet
Share
More Decks by Munich DataGeeks
See All by Munich DataGeeks
Florian Haselbeck- Advancing Synthetic Protein Design with Large Language Models
munichdatageeks
0
79
Tobias Ladner- Formal Verification of Neural Networks in Safety-Critical Environments
munichdatageeks
0
97
Uladzislau Sazanovich - JetBrains AI: Deep Dive
munichdatageeks
0
88
Jan Hauffa - A Case Study on Retrieval-Augmented Generation for Document Q&A: Experiences and Future Perspectives
munichdatageeks
0
100
Thomas Schmidt - Revolutionizing SQL Data Model Testing: Introducing SQL-Mock by DeepL
munichdatageeks
0
64
Maximilian Duesberg - The Data is Clear - But Humans are not
munichdatageeks
0
110
Dr.Christoph Mittendorf-Beyond Bard and Transformers: Unconventional ML Use Cases
munichdatageeks
0
150
Heidi Seibold - Are (data) scientists bad at science?
munichdatageeks
0
140
Roland Rodde- Vegetation management for powerlines with remote sensing data
munichdatageeks
0
170
Other Decks in Technology
See All in Technology
累計5000万DLサービスの裏側 – LINEマンガのKotlinで挑む大規模 Server-side ETLの最適化
ldf_tech
0
150
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.7k
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
790
Boxを“使われる場”にする統制と自動化の仕組み
demaecan
0
170
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
4
2.6k
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
25
17k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
240
戦えるAIエージェントの作り方
iwiwi
20
10k
Observability — Extending Into Incident Response
nari_ex
2
740
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
350
AIの個性を理解し、指揮する
shoota
3
620
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Automating Front-end Workflow
addyosmani
1371
200k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
Tracking those who track us Jan Stępień
My name is Jan Stępień and I come from Warsaw
Data analysis is not just big data
Data analysis is fun
It all started with ads tracking “like” buttons other irrelevant
things
1. Use an adblock plugin 2. Block all network communication
to unwelcome domains
My machine website.com ads.website.com
My machine website.com ads.website.com
Let’s capture all those requests!
03.2012 – 06.2013 106 414 requests 322 distinct days approx.
330 requests per day
SQLite3 + Incanter + R + Weka
http_if_none_match http_referer http_accept_encoding http_accept http_cookie http_connection http_host http_user_agent http_version path_info
http_accept_charset http_accept_language http_cache_control http_if_modified_since request_method request_path request_uri query_string remote_host remote_addr script_name server_name server_port server_protocol http_dnt timestamp
timestamp
03 04 05 06 07 08 09 10 11 12
01 02 03 04 05 06 15k 10k 5k 0
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19 20 21 22 23 100 0 200 300 400 500
8k 6k 4k 2k 0 Mo Tu We Th Fr
Sa Su
http_host
www.google-analytics.com 36197 static.adzerk.net 13983 edge.quantserve.com 11659 www.facebook.com 9641 ad.doubleclick.net 3822
pagead2.googlesyndication.com 3764 s.youtube.com 2173 b.scorecardresearch.com 1974 pubads.g.doubleclick.net 1465 googleads.g.doubleclick.net 1231
48.9% of requests sent to domains owned by Google
http_referer
22902 distinct referrers 4692 distinct domains
Let’s try to combine this dataset with something else
Weather influence?
ogimet.com Humidity, min/max/avg temperature, cloud coverage, visibility, rain/snow, wind speed/direction,
etc.
No correlations!
Tags at stackoverflow.com
http://stackoverflow.com/questions/123/title
data.stackexchange.com
Thanks, wordle.net!
Can be my WWW traffic grouped into clusters?
1. Group requests into 15 minute intervals 2. Count domains
per interval
5008 intervals Each described by over 4500 values
1. Select request from popular domains 2. Group requests into
15 minute intervals 3. Count domains per interval
5008 intervals Each described by 95 values Only 2% of
cells with non-zero values
Principal Component Analysis 95 domains → 16 descriptors
X-means K-means based clustering algorithm
cluster 0 1268 cluster 1 702 cluster 2 651 cluster
3 2387 What is the meaning behind these clusters?
3 stackoverflow.com
2 reddit.com redditmedia.com bbc.co.uk
1 linkedin.com dictionary.reference.com meetup.com
0 rubyonrails.pl developer.android.com tex.stackexchange.com amazon.com youtube.com
How accurate is this clustering? Let’s build a classifier on
the original data
0 1 2 3 ← classified as 1188 29 11
40 cluster 0 47 654 1 0 cluster 1 10 1 622 18 cluster 2 50 0 18 2319 cluster 3 cluster 0: rubyonrails.pl developer.android.com amazon.com youtube.com cluster 1: linkedin.com dictionary.reference.com meetup.com cluster 2: reddit.com redditmedia.com bbc.co.uk cluster 3: stackoverflow.com
Let’s wrap up
Data analysis is not just big data
Data analysis is fun
Thank you very much The picture of Warsaw is ©
Dennis Jarvis 2009