Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jan Stępień - Tracking those who Track
Search
Munich DataGeeks
July 02, 2013
Technology
1
200
Jan Stępień - Tracking those who Track
Talk by Jan Stępień at the firsta Munich DataGeeks Meetup
Data: 02.07.2013
Munich DataGeeks
July 02, 2013
Tweet
Share
More Decks by Munich DataGeeks
See All by Munich DataGeeks
Florian Haselbeck- Advancing Synthetic Protein Design with Large Language Models
munichdatageeks
0
77
Tobias Ladner- Formal Verification of Neural Networks in Safety-Critical Environments
munichdatageeks
0
97
Uladzislau Sazanovich - JetBrains AI: Deep Dive
munichdatageeks
0
82
Jan Hauffa - A Case Study on Retrieval-Augmented Generation for Document Q&A: Experiences and Future Perspectives
munichdatageeks
0
100
Thomas Schmidt - Revolutionizing SQL Data Model Testing: Introducing SQL-Mock by DeepL
munichdatageeks
0
60
Maximilian Duesberg - The Data is Clear - But Humans are not
munichdatageeks
0
100
Dr.Christoph Mittendorf-Beyond Bard and Transformers: Unconventional ML Use Cases
munichdatageeks
0
150
Heidi Seibold - Are (data) scientists bad at science?
munichdatageeks
0
140
Roland Rodde- Vegetation management for powerlines with remote sensing data
munichdatageeks
0
160
Other Decks in Technology
See All in Technology
フィンテック養成勉強会#54
finengine
0
120
rubygem開発で鍛える設計力
joker1007
1
140
A2Aのクライアントを自作する
rynsuke
1
160
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
250
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
4
1.1k
Definition of Done
kawaguti
PRO
6
470
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
400
Prox Industries株式会社 会社紹介資料
proxindustries
0
210
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
850
20250623 Findy Lunch LT Brown
3150
0
810
生成AIで小説を書くためにプロンプトの制約や原則について学ぶ / prompt-engineering-for-ai-fiction
nwiizo
2
280
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
150
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
71
4.9k
Music & Morning Musume
bryan
46
6.6k
What's in a price? How to price your products and services
michaelherold
246
12k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
RailsConf 2023
tenderlove
30
1.1k
The Pragmatic Product Professional
lauravandoore
35
6.7k
The Language of Interfaces
destraynor
158
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Bash Introduction
62gerente
614
210k
Transcript
Tracking those who track us Jan Stępień
My name is Jan Stępień and I come from Warsaw
Data analysis is not just big data
Data analysis is fun
It all started with ads tracking “like” buttons other irrelevant
things
1. Use an adblock plugin 2. Block all network communication
to unwelcome domains
My machine website.com ads.website.com
My machine website.com ads.website.com
Let’s capture all those requests!
03.2012 – 06.2013 106 414 requests 322 distinct days approx.
330 requests per day
SQLite3 + Incanter + R + Weka
http_if_none_match http_referer http_accept_encoding http_accept http_cookie http_connection http_host http_user_agent http_version path_info
http_accept_charset http_accept_language http_cache_control http_if_modified_since request_method request_path request_uri query_string remote_host remote_addr script_name server_name server_port server_protocol http_dnt timestamp
timestamp
03 04 05 06 07 08 09 10 11 12
01 02 03 04 05 06 15k 10k 5k 0
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19 20 21 22 23 100 0 200 300 400 500
8k 6k 4k 2k 0 Mo Tu We Th Fr
Sa Su
http_host
www.google-analytics.com 36197 static.adzerk.net 13983 edge.quantserve.com 11659 www.facebook.com 9641 ad.doubleclick.net 3822
pagead2.googlesyndication.com 3764 s.youtube.com 2173 b.scorecardresearch.com 1974 pubads.g.doubleclick.net 1465 googleads.g.doubleclick.net 1231
48.9% of requests sent to domains owned by Google
http_referer
22902 distinct referrers 4692 distinct domains
Let’s try to combine this dataset with something else
Weather influence?
ogimet.com Humidity, min/max/avg temperature, cloud coverage, visibility, rain/snow, wind speed/direction,
etc.
No correlations!
Tags at stackoverflow.com
http://stackoverflow.com/questions/123/title
data.stackexchange.com
Thanks, wordle.net!
Can be my WWW traffic grouped into clusters?
1. Group requests into 15 minute intervals 2. Count domains
per interval
5008 intervals Each described by over 4500 values
1. Select request from popular domains 2. Group requests into
15 minute intervals 3. Count domains per interval
5008 intervals Each described by 95 values Only 2% of
cells with non-zero values
Principal Component Analysis 95 domains → 16 descriptors
X-means K-means based clustering algorithm
cluster 0 1268 cluster 1 702 cluster 2 651 cluster
3 2387 What is the meaning behind these clusters?
3 stackoverflow.com
2 reddit.com redditmedia.com bbc.co.uk
1 linkedin.com dictionary.reference.com meetup.com
0 rubyonrails.pl developer.android.com tex.stackexchange.com amazon.com youtube.com
How accurate is this clustering? Let’s build a classifier on
the original data
0 1 2 3 ← classified as 1188 29 11
40 cluster 0 47 654 1 0 cluster 1 10 1 622 18 cluster 2 50 0 18 2319 cluster 3 cluster 0: rubyonrails.pl developer.android.com amazon.com youtube.com cluster 1: linkedin.com dictionary.reference.com meetup.com cluster 2: reddit.com redditmedia.com bbc.co.uk cluster 3: stackoverflow.com
Let’s wrap up
Data analysis is not just big data
Data analysis is fun
Thank you very much The picture of Warsaw is ©
Dennis Jarvis 2009