Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jan Stępień - Tracking those who Track
Search
Munich DataGeeks
July 02, 2013
Technology
1
200
Jan Stępień - Tracking those who Track
Talk by Jan Stępień at the firsta Munich DataGeeks Meetup
Data: 02.07.2013
Munich DataGeeks
July 02, 2013
Tweet
Share
More Decks by Munich DataGeeks
See All by Munich DataGeeks
Florian Haselbeck- Advancing Synthetic Protein Design with Large Language Models
munichdatageeks
0
84
Tobias Ladner- Formal Verification of Neural Networks in Safety-Critical Environments
munichdatageeks
0
100
Uladzislau Sazanovich - JetBrains AI: Deep Dive
munichdatageeks
0
92
Jan Hauffa - A Case Study on Retrieval-Augmented Generation for Document Q&A: Experiences and Future Perspectives
munichdatageeks
0
110
Thomas Schmidt - Revolutionizing SQL Data Model Testing: Introducing SQL-Mock by DeepL
munichdatageeks
0
70
Maximilian Duesberg - The Data is Clear - But Humans are not
munichdatageeks
0
110
Dr.Christoph Mittendorf-Beyond Bard and Transformers: Unconventional ML Use Cases
munichdatageeks
0
160
Heidi Seibold - Are (data) scientists bad at science?
munichdatageeks
0
150
Roland Rodde- Vegetation management for powerlines with remote sensing data
munichdatageeks
0
170
Other Decks in Technology
See All in Technology
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
180
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
200
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
730
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
480
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
570
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
310
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
350
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
200
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.4k
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
120
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
4 Signs Your Business is Dying
shpigford
186
22k
How STYLIGHT went responsive
nonsquared
100
6k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Scaling GitHub
holman
464
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Practical Orchestrator
shlominoach
190
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Unsuck your backbone
ammeep
671
58k
Why Our Code Smells
bkeepers
PRO
340
57k
Transcript
Tracking those who track us Jan Stępień
My name is Jan Stępień and I come from Warsaw
Data analysis is not just big data
Data analysis is fun
It all started with ads tracking “like” buttons other irrelevant
things
1. Use an adblock plugin 2. Block all network communication
to unwelcome domains
My machine website.com ads.website.com
My machine website.com ads.website.com
Let’s capture all those requests!
03.2012 – 06.2013 106 414 requests 322 distinct days approx.
330 requests per day
SQLite3 + Incanter + R + Weka
http_if_none_match http_referer http_accept_encoding http_accept http_cookie http_connection http_host http_user_agent http_version path_info
http_accept_charset http_accept_language http_cache_control http_if_modified_since request_method request_path request_uri query_string remote_host remote_addr script_name server_name server_port server_protocol http_dnt timestamp
timestamp
03 04 05 06 07 08 09 10 11 12
01 02 03 04 05 06 15k 10k 5k 0
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19 20 21 22 23 100 0 200 300 400 500
8k 6k 4k 2k 0 Mo Tu We Th Fr
Sa Su
http_host
www.google-analytics.com 36197 static.adzerk.net 13983 edge.quantserve.com 11659 www.facebook.com 9641 ad.doubleclick.net 3822
pagead2.googlesyndication.com 3764 s.youtube.com 2173 b.scorecardresearch.com 1974 pubads.g.doubleclick.net 1465 googleads.g.doubleclick.net 1231
48.9% of requests sent to domains owned by Google
http_referer
22902 distinct referrers 4692 distinct domains
Let’s try to combine this dataset with something else
Weather influence?
ogimet.com Humidity, min/max/avg temperature, cloud coverage, visibility, rain/snow, wind speed/direction,
etc.
No correlations!
Tags at stackoverflow.com
http://stackoverflow.com/questions/123/title
data.stackexchange.com
Thanks, wordle.net!
Can be my WWW traffic grouped into clusters?
1. Group requests into 15 minute intervals 2. Count domains
per interval
5008 intervals Each described by over 4500 values
1. Select request from popular domains 2. Group requests into
15 minute intervals 3. Count domains per interval
5008 intervals Each described by 95 values Only 2% of
cells with non-zero values
Principal Component Analysis 95 domains → 16 descriptors
X-means K-means based clustering algorithm
cluster 0 1268 cluster 1 702 cluster 2 651 cluster
3 2387 What is the meaning behind these clusters?
3 stackoverflow.com
2 reddit.com redditmedia.com bbc.co.uk
1 linkedin.com dictionary.reference.com meetup.com
0 rubyonrails.pl developer.android.com tex.stackexchange.com amazon.com youtube.com
How accurate is this clustering? Let’s build a classifier on
the original data
0 1 2 3 ← classified as 1188 29 11
40 cluster 0 47 654 1 0 cluster 1 10 1 622 18 cluster 2 50 0 18 2319 cluster 3 cluster 0: rubyonrails.pl developer.android.com amazon.com youtube.com cluster 1: linkedin.com dictionary.reference.com meetup.com cluster 2: reddit.com redditmedia.com bbc.co.uk cluster 3: stackoverflow.com
Let’s wrap up
Data analysis is not just big data
Data analysis is fun
Thank you very much The picture of Warsaw is ©
Dennis Jarvis 2009