Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jan Stępień - Tracking those who Track
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Munich DataGeeks
July 02, 2013
Technology
1
200
Jan Stępień - Tracking those who Track
Talk by Jan Stępień at the firsta Munich DataGeeks Meetup
Data: 02.07.2013
Munich DataGeeks
July 02, 2013
Tweet
Share
More Decks by Munich DataGeeks
See All by Munich DataGeeks
Florian Haselbeck- Advancing Synthetic Protein Design with Large Language Models
munichdatageeks
0
93
Tobias Ladner- Formal Verification of Neural Networks in Safety-Critical Environments
munichdatageeks
0
110
Uladzislau Sazanovich - JetBrains AI: Deep Dive
munichdatageeks
0
94
Jan Hauffa - A Case Study on Retrieval-Augmented Generation for Document Q&A: Experiences and Future Perspectives
munichdatageeks
0
110
Thomas Schmidt - Revolutionizing SQL Data Model Testing: Introducing SQL-Mock by DeepL
munichdatageeks
0
75
Maximilian Duesberg - The Data is Clear - But Humans are not
munichdatageeks
0
110
Dr.Christoph Mittendorf-Beyond Bard and Transformers: Unconventional ML Use Cases
munichdatageeks
0
160
Heidi Seibold - Are (data) scientists bad at science?
munichdatageeks
0
150
Roland Rodde- Vegetation management for powerlines with remote sensing data
munichdatageeks
0
170
Other Decks in Technology
See All in Technology
KubeCon + CloudNativeCon NA ‘25 Recap, Extensibility: Gateway API / NRI
ladicle
0
170
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
370
GCASアップデート(202510-202601)
techniczna
0
240
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
350
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
350
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
230
オープンウェイトのLLMリランカーを契約書で評価する / searchtechjp
sansan_randd
3
570
2026年はチャンキングを極める!
shibuiwilliam
8
1.8k
しろおびセキュリティへ ようこそ
log0417
0
260
Databricks Free Edition講座 データサイエンス編
taka_aki
0
280
3分でわかる!新機能 AWS Transform custom
sato4mi
1
320
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.4k
Featured
See All Featured
Code Review Best Practice
trishagee
74
20k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Ethics towards AI in product and experience design
skipperchong
2
190
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
WCS-LA-2024
lcolladotor
0
440
Automating Front-end Workflow
addyosmani
1371
200k
Speed Design
sergeychernyshev
33
1.5k
Deep Space Network (abreviated)
tonyrice
0
42
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Between Models and Reality
mayunak
1
180
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
60
Transcript
Tracking those who track us Jan Stępień
My name is Jan Stępień and I come from Warsaw
Data analysis is not just big data
Data analysis is fun
It all started with ads tracking “like” buttons other irrelevant
things
1. Use an adblock plugin 2. Block all network communication
to unwelcome domains
My machine website.com ads.website.com
My machine website.com ads.website.com
Let’s capture all those requests!
03.2012 – 06.2013 106 414 requests 322 distinct days approx.
330 requests per day
SQLite3 + Incanter + R + Weka
http_if_none_match http_referer http_accept_encoding http_accept http_cookie http_connection http_host http_user_agent http_version path_info
http_accept_charset http_accept_language http_cache_control http_if_modified_since request_method request_path request_uri query_string remote_host remote_addr script_name server_name server_port server_protocol http_dnt timestamp
timestamp
03 04 05 06 07 08 09 10 11 12
01 02 03 04 05 06 15k 10k 5k 0
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19 20 21 22 23 100 0 200 300 400 500
8k 6k 4k 2k 0 Mo Tu We Th Fr
Sa Su
http_host
www.google-analytics.com 36197 static.adzerk.net 13983 edge.quantserve.com 11659 www.facebook.com 9641 ad.doubleclick.net 3822
pagead2.googlesyndication.com 3764 s.youtube.com 2173 b.scorecardresearch.com 1974 pubads.g.doubleclick.net 1465 googleads.g.doubleclick.net 1231
48.9% of requests sent to domains owned by Google
http_referer
22902 distinct referrers 4692 distinct domains
Let’s try to combine this dataset with something else
Weather influence?
ogimet.com Humidity, min/max/avg temperature, cloud coverage, visibility, rain/snow, wind speed/direction,
etc.
No correlations!
Tags at stackoverflow.com
http://stackoverflow.com/questions/123/title
data.stackexchange.com
Thanks, wordle.net!
Can be my WWW traffic grouped into clusters?
1. Group requests into 15 minute intervals 2. Count domains
per interval
5008 intervals Each described by over 4500 values
1. Select request from popular domains 2. Group requests into
15 minute intervals 3. Count domains per interval
5008 intervals Each described by 95 values Only 2% of
cells with non-zero values
Principal Component Analysis 95 domains → 16 descriptors
X-means K-means based clustering algorithm
cluster 0 1268 cluster 1 702 cluster 2 651 cluster
3 2387 What is the meaning behind these clusters?
3 stackoverflow.com
2 reddit.com redditmedia.com bbc.co.uk
1 linkedin.com dictionary.reference.com meetup.com
0 rubyonrails.pl developer.android.com tex.stackexchange.com amazon.com youtube.com
How accurate is this clustering? Let’s build a classifier on
the original data
0 1 2 3 ← classified as 1188 29 11
40 cluster 0 47 654 1 0 cluster 1 10 1 622 18 cluster 2 50 0 18 2319 cluster 3 cluster 0: rubyonrails.pl developer.android.com amazon.com youtube.com cluster 1: linkedin.com dictionary.reference.com meetup.com cluster 2: reddit.com redditmedia.com bbc.co.uk cluster 3: stackoverflow.com
Let’s wrap up
Data analysis is not just big data
Data analysis is fun
Thank you very much The picture of Warsaw is ©
Dennis Jarvis 2009