Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R Based tools for open and collaborative science
Search
Scott Chamberlain
July 26, 2013
Science
0
1.4k
R Based tools for open and collaborative science
Ignite talk at ESA on R-based tools for open and collaborative science
Scott Chamberlain
July 26, 2013
Tweet
Share
More Decks by Scott Chamberlain
See All by Scott Chamberlain
Contribution of traits, phenology, & phylogenetic history to plant-pollinator network structure
myrmecocystus
0
83
Programmatic access for Altmetrics
myrmecocystus
1
110
Contribution of traits and phylogenetic history to plant-pollinator network
myrmecocystus
0
110
Other Decks in Science
See All in Science
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
480
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
450
2025-06-11-ai_belgium
sofievl
1
120
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
230
CV_5_3dVision
hachama
0
140
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
950
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
490
データベース10: 拡張実体関連モデル
trycycle
PRO
0
690
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1k
機械学習 - 授業概要
trycycle
PRO
0
190
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
680
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
GraphQLとの向き合い方2022年版
quramy
47
14k
Typedesign – Prime Four
hannesfritz
42
2.7k
How to train your dragon (web standard)
notwaldorf
92
6.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
What's in a price? How to price your products and services
michaelherold
246
12k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Building a Modern Day E-commerce SEO Strategy
aleyda
41
7.3k
Transcript
R-based tools for open and collaborative science @recology_ Scott Chamberlain
Science needs to be more open
http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg We build on the knowledge of others http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg
Less mistakes More things can happen b/c data is open
http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg The public paid for it!
http://www.fotopedia.com/items/flickr-4796633039 But we need tools to do it!!!!!
What kinds of tools? Not these
These!!!!!!
• Collect data • Manipulate data • Visualize • Analyze
• Write What does an ecologist do?
R is a good solution
• R is Open source = Free + Rapid change
• R = entire workflow in 1 place • R = reproducible science Why?
Get some data from the web library(RCurl); library(RJSONIO) dat <-
fromJSON(getURL("https://api.github.com/users/hadley/repos")) Manipulate the data library(plyr); library(reshape2) dat_melt <- melt(ldply(dat, function(x) data.frame(x[names(x) %in% c("name","watchers_count","forks")]))) Run some statistical model lm(value ~ variable, data = dat_melt) Visualize results library(ggplot2) ggplot(dat_melt, aes(name, value, colour = variable)) + geom_point() + coord_flip() Write the paper # Introduction...
Data increasingly on the web
The toolbelt
Literature library(rplos) plot_throughtime('phylogeny', 300) + geom_line(size=2)
Taxonomy library(taxize) classification("Abies procera", db = "itis") rankName taxonName
tsn Kingdom Plantae 202422 Subkingdom Viridaeplantae 846492 Infrakingdom Streptophyta 846494 Division Tracheophyta 846496 Subdivision Spermatophytina 846504 Infradivision Gymnospermae 846506 Class Pinopsida 500009 Order Pinales 500028 Family Pinaceae 18030 Genus Abies 18031 Species Abies procera 181835
Species occurrences from GBIF library(rgbif) splist <- c('Accipiter erythronemius', 'Junco
hyemalis', 'Aix sponsa', 'Podiceps cristatus') out <- occurrencelist_many(splist) gbifmap_list(out)
Occurrence from USGS’s BISON service library(rbison) out <- bison(species="Helianthus annuus",
count=500) bisonmap(input=out, tomap="county")
Climate data from the World Bank library(rWBclimate) country.list <- c("USA",
"MEX") country.dat <- get_historical_temp(country.list, "year") ggplot(country.dat, aes(x = year, y = data, group = locator)) + geom_point() + geom_path() + labs(y="Average annual temperature of Canada", x="Year") + theme_bw() + stat_smooth(se = F, colour = "black") + facet_wrap(~locator, scale = "free")
Take action! FontAwesome http://fortawesome.github.io/Font-Awesome/ fontawesome 2 png https://github.com/odyniec/font-awesome-to-png Presentation available
here: http://bit.ly/16tuVbu