Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R Based tools for open and collaborative science
Search
Scott Chamberlain
July 26, 2013
Science
0
1.4k
R Based tools for open and collaborative science
Ignite talk at ESA on R-based tools for open and collaborative science
Scott Chamberlain
July 26, 2013
Tweet
Share
More Decks by Scott Chamberlain
See All by Scott Chamberlain
Contribution of traits, phenology, & phylogenetic history to plant-pollinator network structure
myrmecocystus
0
84
Programmatic access for Altmetrics
myrmecocystus
1
110
Contribution of traits and phylogenetic history to plant-pollinator network
myrmecocystus
0
110
Other Decks in Science
See All in Science
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
150
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
Ignite の1年間の軌跡
ktombow
0
200
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
検索と推論タスクに関する論文の紹介
ynakano
1
120
学術講演会中央大学学員会府中支部
tagtag
PRO
0
340
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
650
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
130
Featured
See All Featured
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
Six Lessons from altMBA
skipperchong
29
4.1k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Navigating Team Friction
lara
191
16k
First, design no harm
axbom
PRO
1
1.1k
The Curious Case for Waylosing
cassininazir
0
200
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
Discover your Explorer Soul
emna__ayadi
2
1k
A Modern Web Designer's Workflow
chriscoyier
698
190k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
The Spectacular Lies of Maps
axbom
PRO
1
420
Transcript
R-based tools for open and collaborative science @recology_ Scott Chamberlain
Science needs to be more open
http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg We build on the knowledge of others http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg
Less mistakes More things can happen b/c data is open
http://everyoneknowsbest.files.wordpress.com/2008/08/bodysculpture.jpg The public paid for it!
http://www.fotopedia.com/items/flickr-4796633039 But we need tools to do it!!!!!
What kinds of tools? Not these
These!!!!!!
• Collect data • Manipulate data • Visualize • Analyze
• Write What does an ecologist do?
R is a good solution
• R is Open source = Free + Rapid change
• R = entire workflow in 1 place • R = reproducible science Why?
Get some data from the web library(RCurl); library(RJSONIO) dat <-
fromJSON(getURL("https://api.github.com/users/hadley/repos")) Manipulate the data library(plyr); library(reshape2) dat_melt <- melt(ldply(dat, function(x) data.frame(x[names(x) %in% c("name","watchers_count","forks")]))) Run some statistical model lm(value ~ variable, data = dat_melt) Visualize results library(ggplot2) ggplot(dat_melt, aes(name, value, colour = variable)) + geom_point() + coord_flip() Write the paper # Introduction...
Data increasingly on the web
The toolbelt
Literature library(rplos) plot_throughtime('phylogeny', 300) + geom_line(size=2)
Taxonomy library(taxize) classification("Abies procera", db = "itis") rankName taxonName
tsn Kingdom Plantae 202422 Subkingdom Viridaeplantae 846492 Infrakingdom Streptophyta 846494 Division Tracheophyta 846496 Subdivision Spermatophytina 846504 Infradivision Gymnospermae 846506 Class Pinopsida 500009 Order Pinales 500028 Family Pinaceae 18030 Genus Abies 18031 Species Abies procera 181835
Species occurrences from GBIF library(rgbif) splist <- c('Accipiter erythronemius', 'Junco
hyemalis', 'Aix sponsa', 'Podiceps cristatus') out <- occurrencelist_many(splist) gbifmap_list(out)
Occurrence from USGS’s BISON service library(rbison) out <- bison(species="Helianthus annuus",
count=500) bisonmap(input=out, tomap="county")
Climate data from the World Bank library(rWBclimate) country.list <- c("USA",
"MEX") country.dat <- get_historical_temp(country.list, "year") ggplot(country.dat, aes(x = year, y = data, group = locator)) + geom_point() + geom_path() + labs(y="Average annual temperature of Canada", x="Year") + theme_bw() + stat_smooth(se = F, colour = "black") + facet_wrap(~locator, scale = "free")
Take action! FontAwesome http://fortawesome.github.io/Font-Awesome/ fontawesome 2 png https://github.com/odyniec/font-awesome-to-png Presentation available
here: http://bit.ly/16tuVbu