Contribution of traits, phenology, & phylogenetic history to plant-pollinator network structure

Contribution of traits, phenology, & phylogenetic history to plant-pollinator network structure

Talk given at the Entomological Society of Canada meeting

D9033fa816e09d79e44995e92f025cdd?s=128

Scott Chamberlain

October 23, 2013
Tweet

Transcript

  1. Contribu)on  of  traits,  phenology,  &   phylogene)c  history  to  plant-­‐

    pollinator  network  structure   Sco;  Chamberlain     Simon  Fraser  University  
  2. Thanks  to!   •  Elizabeth  Elle   •  Jana  Vamosi

      •  Ralph  Cartar   •  Sarah  Semmler   •  Anne  Worley   •  And  many  more  that  provided  data…  
  3. Species  in  communi)es  form  networks  

  4. Pa;erns  oLen  similar  among  networks   Plants   Pollinators  

  5. Structure  ma;ers   Bascompte&Jordano2007AREES  

  6. What  drives  network  structure?  

  7. Traits   Body  size  

  8. Phenology   Emergence  date     Or     Seasonal

     ac)vity  
  9. Phylogene)c   History  

  10. Traits   Phenology   Phylogene)c   History  

  11. Study  sites  

  12. Phylogeny   Plants   Pollinators  

  13. Species  level  metrics   •  Degree   •  Specializa)on  (accounts

     for  interac)on  intensity)   •  Within  module  degree   •  Among  module  connec)vity  
  14. Traits  -­‐  Pollinators   •  Nest  loca)on:  above/below  ground  -­‐

     NS   •  Nest  type:  excavator/renter  -­‐  NS   •  Parasi)c:  yes/no  -­‐  NS  
  15. Traits  -­‐  Pollinators   •  Nest  loca)on:  above/below  ground  -­‐

     NS   •  Nest  type:  excavator/renter  -­‐  NS   •  Parasi)c:  yes/no  -­‐  NS   •  Social:  solitary/social  –     –  Within  module  degree:  social  (module  hubs),  solitary   (peripherals)   –  Among  module  connec)vity:  social  (connectors),   solitary  (peripherals)   –  Degree:  social  (higher),  solitary  (lower)   •  Body  size  –  larger  spp.  w/  larger  degree  
  16. Traits  -­‐  Plants   •  Breeding  system     – 

    Gynomonoecious:  less  specialized,  higher  degree   –  Hermaphrodites:  more  specialized,  lower  degree  
  17. Traits  -­‐  Plants   •  Breeding  system     – 

    Gynomonoecious:  less  specialized,  higher  degree   –  Hermaphrodites:  more  specialized,  lower  degree   •  Growth  form   –  Herbaceous:  lower  within  module  degree   –  Woody:  higher  within  module  degree  
  18. Traits  -­‐  Plants   •  Breeding  system     – 

    Gynomonoecious:  less  specialized,  higher  degree   –  Hermaphrodites:  more  specialized,  lower  degree   •  Growth  form   –  Herbaceous:  lower  within  module  degree   –  Woody:  higher  within  module  degree   •  Flower  symmetry:     –  Bilateral:  lower  within  module  degree,  lower  degree   –  Radial:    higher  within  module  degree,  higher  degree   •  Flower  size:  smaller  flowers  higher  within  module   degree  
  19. Network  level   network  structure  ~     FDisPO  +

     FDisPL  +  MPDPO  +  MPDPL  
  20. Network  level   network  structure  ~     FDisPO  +

     FDisPL  +  MPDPO  +  MPDPL   0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 Modularity 0.2 0.3 0.4 0.5 Connectance A B 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 Modularity 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 Pollinator FDis Connectance A B Pollinator  Func)onal  Trait  Dispersion  
  21. Conclusion   •  Species  level   – Sociality  important  in  pollinators

      – Ma)ng  systems,  flower  symmetry  &  growth  form   important  in  plants   •  Network  level   – At  network  level,  é pollinator  func)onal   diversity  w/  é modularity  &  ê  connectance   – Pollinator  traits  bigger  drivers  of  network   structure  rela)ve  to  plants  
  22. Phenology   •  Species  vary  in  when  they  start  flowering

      (plants)  and  start  flying  (pollinators)   •  Varia)on  among  species  can  lead  to  changes   in  network  structure  
  23. HLG HLU OKG OKU SOG SOU WLG WLU cr1 cr2

    fs1 fs2 go1 go2 mm1 mm2 mz1 mz2 sm1 sm2 AG BB−1 BB−2 BI CF−1 CF−2 CV DP LSCR OM PS−1 PS−2 TH 100 150 200 100 150 200 100 150 200 Julian day (days since 1 Jan)
  24. Phenology  is  associated  with  structures  

  25. Robustness  differs  among  groups   Plants Pollinators • • •

    • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • •• • • •• • • • • • •• • • • • •• • 0.4 0.6 0.8 • FJ FJr Plants Pollinators • • • • • • • • • •• •• • • •• • • • • • • • •• • • • • • • • • • • • • • • •• • •• • • • •• • • • • • • • • • • • • • • • • 0.4 0.5 0.6 0.7 0.8 0.9 • D Dr Robustness
  26. Phylogene)c  tree  shape   •  Shape  easily  measured   • 

    Metrics  represent  whether     – Branching  events  recent  or  old   – Branching  events  even  across  tree,  or  some   groups  speciate  more  than  others   •  Shape  could  influence  who  interacts  with  who  
  27. Shape  correlated  with  network   structure  

  28. Simula)ons  suggest  a  causal  link   0.68 0.70 0.72 0.74

    0.72 0.76 Tree balance Distribu Brownian Motion −Burst Modularity  
  29. Traits   Phenology   Phylogene)c   History  

  30. Thanks  to   •  Elizabeth  Elle   •  Jana  Vamosi

      •  Ralph  Cartar   •  Sarah  Semmler   •  Anne  Worley   Silhoue;es:  Phylopic.org          h;p://phylopic.org/image/070c78bc-­‐e075-­‐4098-­‐a66b-­‐fca2f02680ea/