Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

Naru Tsutsumida

naru-T
October 15, 2017

Naru Tsutsumida

presentation file for FOSS4F 2017 KYOTO.KANSAI

naru-T

October 15, 2017
Tweet

More Decks by naru-T

Other Decks in Technology

Transcript

  1. ࣌ܥྻӴ੕ը૾σʔλॲཧπʔϧͷ঺հ Narumasa Tsutsumida అా੒੓ Assist. Prof. Graduate School of Global

    Environmental Studies, Kyoto University, ژ౎େֶ஍ٿ؀ڥֶಊɹॿڭ OSGeo Charter member 1
  2. 2 Contents • Time series raster data processing by •

    Cloud based tools (Google Earth Engine) • Local tools (GDAL, R,…)
  3. Earth Observation approach Tsutsumida et al (2013) Land, 2, 534-549

    Tsutsumida et al (2016) Remote Sensing, 8(2), 143 Urban expansion monitoring Ulaanbaatar Jakarta
  4. GIScience approach Tsutsumida et al (2016) Towards FUTURE EARTH: Challenges

    and Progress of Global Environmental Studies, Kaisei Publishing, pp.61-79 Spatio-temporal overall accuracy
  5. 6 Massive remote sensing open data are now freely available!

    • Landsat • Sentinel • MODIS … https://landsat.usgs.gov/landsat-archive https://modis-land.gsfc.nasa.gov/MODLAND_grid.html
  6. 7 Massive remote sensing open data Processing Download Mosaic Reprojection

    Analysis Output wget (shell) GDAL ModisTool … GRASS Python R C C++ … save time and resources to focus on your main task! Define ROI Your interest Data selection
  7. If you are interested in using open RS data •

    No need to consider about RAM / Disk. • No need to download raw data. Google Earth Engine
  8. • Define a target area • Set a data product

    • Data DL→Format conversion ʢHDF→TiffʣˠMosaic→… RS data processing in Google Earth Engine
  9. DEMO: Time series changes in MODIS NDVI average at global

    scale Is NDVI average stable over time? Not specific yet = global in 2001-2016 MODIS Download Mosaic Reprojection Analysis Output Define ROI Your interest Data selection GEE GEE GEE Whatever you want Whatever you want 460*24*16=176,640 hdf files…
  10. Local tools •gdal_calc.py •R (raster) •Python (rasterio) •ɾɾɾ Analysis (Parallel

    or loop) Aggregation Prepared large raster data Split large raster into patches Output rasterOptions(maxmemory = 1e+10) rasterOptions(tmpdir = 'tmpfolder') gdalbuildvrt gdal_translate qgis