Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
201803生態学会山北集会
Search
naru-T
March 19, 2018
Research
0
240
201803生態学会山北集会
naru-T
March 19, 2018
Tweet
Share
More Decks by naru-T
See All by naru-T
Naru Tsutsumida
narut
0
1.7k
Other Decks in Research
See All in Research
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
160
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
390
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
320
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
180
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
100
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
11k
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
湯村研究室の紹介2025 / yumulab2025
yumulab
0
230
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
980
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
投資戦略202508
pw
0
580
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
23k
BBQ
matthewcrist
89
9.9k
Practical Orchestrator
shlominoach
190
11k
Done Done
chrislema
186
16k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
700
How GitHub (no longer) Works
holman
316
140k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Faster Mobile Websites
deanohume
310
31k
KATA
mclloyd
PRO
32
15k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Transcript
大規模リモートセンシングデータをもちいた土地 被覆分類 堤田 成政 京都大学 地球環境学堂
内容 大規模リモートセンシングデータをもちいた土地被覆分類 ◦ 1.データが大きいので・・・ ▪ DL→分析前処理までが大変 ▪ 分析が大変 ◦ 2.教師データの収集が大変(教師付き分類)
▪ なんだかんだいって教師データにすべてがかかっている ◦ 3.精度評価の辛み ▪ 精度評価は評価サンプルにすべてがかかっている ▪ 精度評価の辛み ▪ 空間精度評価の試み ▪ 誤差を含んだ分類図利用 ▪ ポリゴンデータの精度評価 ◦ まとめ:ふるくてあたらしい土地被覆分類研究
1.データが大きいので・・・ • DL→分析前処理までが大変 ◦ 使用データがオープンデータであればGoogle Earth Engine (GEE)
データが大きいので・・・ • 分析が大変 (Rを想定) ◦ nvblas (on nvidia GPU)を使う ◦ ラスターの使用RAMの上限を引き伸ばすrasterOptions(maxmemory
= 1e10) ◦ raster::clusterRを使う ◦ おそらくPythonでも一緒(numpy, rasterioまわりをいじる?) • これだけで数倍速! ◦ 個人的にはRもpythonも速度的には大した差がないのでは
分析例1(機械学習のためのGEE) • データ収集(AVHRR CDR. 1982-2016, Daily =(365.25×35=12783 mosaiced images), 5km
res.)(計約3.4TB分)) • 下処理 (QA処理、バンドごと平均・標準偏差(一年ごと)=(12バンド×35年) • 結果をGoogle Driveへ出力 (12 パラメータ×35年 = 約266MB/年 = 9.3GB)) • Google DriveからDL • RF + Logit・・・などで分析 (with nvblas, cluserR) • 注:単純な機械学習ならGEEで可
分析例2(統計モデルのためのGEE) • データ収集(MOD09GQ. 2001-2016, Daily =(365.25×16=5844 mosaiced images), 250m res.)
(計約1.5TB分)) • 下処理 (QA処理、Harmonic analysis(一年ごと)) • 結果をGoogle Driveへ出力 (4 パラメータ×16年 = 64 images (約250MB/image = 16GB)) • Google DriveからDL • bfastによる時系列分析 (with nvblas, cluserR)
2.教師データの収集が大変(教師付き分類) • なんだかんだいって教師データにすべてがかかっている ◦ よい教師データ→(モデル) →よい結果 ◦ 悪い教師データ→(どんなによいモデルでも)→わるい結果 • 教師データのオリジナリティがすべて ◦
分類クラス数・定義はデータ作成者次第 ◦ 分類図ユーザーの需要とマッチしない ▪ 誰のための分類図? • 自分で集める ◦ フィールドワーク ◦ Google Earth など • 教師データをシチズンサイエンスとして集める ◦ Geo-wiki ◦ SACLAJ など Geo-wiki. Fritz et al. (2017) in Scientific data SALCAJ
3. 精度評価の辛み • 精度評価は評価サンプルにすべてがかかっている ◦ 評価サンプルはランダムサンプリング?階層サンプリング? ◦ 精度評価は評価サンプルからの相対評価 ▪ 異なる評価サンプルによる精度評価は比較不能
▪ 評価サンプルの精度を検証すべき? ▪ 誤差は伝搬する • 精度評価の辛み ◦ 全体精度(Overall accuracy) ◦◦% = 全体誤差 100 - ◦◦% ◦ 精度(誤差)の空間的な偏り ▪ 空間データに適用した非空間分類モデルの誤差はランダムでない ▪ ランダムサンプリングされた評価サンプルをつかっても代表性があるとは限らない
誤差を含んだ分類図利用 • 誤差は伝搬する ◦ 土地被覆変化分析の怪(Post-classification comparison) ▪ 2時点比較(Post-classification comparison)はただしい? •
例:0.75×0.75≒0.56 ▪ 時系列評価サンプル収集は可能か? • 例:2000年ー2010年の土地被覆変化 ▪ 精度評価は評価サンプルからの相対評価 ◦ 2時点での評価サンプルがあれば変化マトリックスの作成が可能
ポリゴンデータの精度評価 • ポリゴンデータ精度評価はかなり難しい ◦ 作成したポリゴンと参照ポリゴンを比べて・・・ ▪ 面積の重複率? ▪ 外縁の長さ?(例:海岸線) ▪
角度ずれ?(例:パズル) Su and Zhang, ISPRS 2017
まとめ:ふるくてあたらしい土地被覆分類研究 • 衛星・ドローン画像を分類する ◦ 使用データを決める(解像度) ▪ 使用データがおおすぎて決めれない ◦ 分類クラスを決める ▪
おれさま分類図はニーズにあわない • 人によって定義はバラバラ ▪ ユーザーがほしい分類図とは? ◦ 教師サンプルをつくる ▪ 多様なクラス組み合わせが可能な教師サンプル をどうつくる? ◦ モデルを組む ▪ 適切なモデル? ◦ 精度分析する ▪ 適切な参照データ? ▪ 適切な精度分析? ▪ 精度のばらつき • それ以外で分類する ◦ OSM ◦ Mapillary ◦ VR?