Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ONNXハンズオン
Search
NearMeの技術発表資料です
PRO
May 24, 2024
2
78
ONNXハンズオン
NearMeの技術発表資料です
PRO
May 24, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
8
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
290
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
26
ローカルLLM
nearme_tech
PRO
0
45
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
28
Box-Muller法
nearme_tech
PRO
1
40
Kiro触ってみた
nearme_tech
PRO
0
350
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
600
Featured
See All Featured
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
130
Navigating Team Friction
lara
191
16k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Paper Plane (Part 1)
katiecoart
PRO
0
3k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
51
Unsuck your backbone
ammeep
671
58k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
49k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Navigating Weather and Climate Data
rabernat
0
68
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Skip the Path - Find Your Career Trail
mkilby
0
42
Transcript
0 ONNXハンズオン 2024-05-24 第91回NearMe技術勉強会 Takuma KAKINOUE
1 ONNXとは • Open Neural Network eXchangeの略 • ある機械学習フレームワークで訓練したモデルを、統⼀されたフォーマットに 出⼒し(.onnxファイル)、ONNXランタイムが含まれる任意の環境で推論を実
⾏可能にしようというもの • 例えば、Pythonで訓練したPytorchのNNモデルを使って、TypeScriptやC#上 でも推論(not 訓練)が実⾏可能になる ◦ TypeScriptやC#の環境の中にはONNXランタイムさえインストールされて いれば良い ※ web: https://onnx.ai/ ※ github: https://github.com/onnx/onnx ※ .onnxファイルはProtocol Buffers形式
2 ONNX概略図 ONNXランタイム ONNX Model Zoo 訓練済みモデルをpull 自前で訓練して エクスポート .onnx
ファイル 推論実行 ※ クラウドストレージ等でも可 実行ホストは、 マイコンやコンシューマー ゲーム機など無限の可能 性!! 訓練済みモデルを ダウンロードして 使用可! 今回のハンズオンではPytorchで自前で訓練
3 ONNXハンズオン • Pythonで⼿書き⽂字を認識するモデルをPytorchで学習し、Javascriptのwebアプリ上 から推論を⾏う ◦ サンプルのレポジトリ:
[email protected]
:kakky-hacker/sandbox.git • ⼿順 ◦
git clone
[email protected]
:kakky-hacker/sandbox.git ◦ cd sandbox/onnx-test ◦ pip install -r requirements.txt ◦ python train.py ▪ mnist.onnxが⽣成される ◦ python -m http.server 8000 ◦ ブラウザからhttp://localhost:8000にアクセス
4 ONNXハンズオン • Canvasに適当な数字を書いてPredictボタンを押すと予測結果が表⽰される 正しく予測できた!
5 ONNXの注意点 • opsetバージョンが存在し、モデルをエクスポートする時に注意しなければならない (https://github.com/onnx/onnx/blob/main/docs/Operators.md) • 全ての演算オペレータが実装されているわけではない ◦ ⼀応、カスタムオペレータという⼿段は存在する •
当たり前だが、推論速度は推論を⾏うハードウェアに依存する ◦ 訓練するハードウェアと推論するハードウェアのマシンスペック差はちゃんと考慮 しなければならない ▪ ONNXランタイムはGPU対応 ▪ ちなみにONNXランタイム⾃体もそこまで遅くなさそう (https://qiita.com/john-rocky/items/caa55453f40f5f444edf)
6 Thank you