$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ONNXハンズオン
Search
NearMeの技術発表資料です
PRO
May 24, 2024
2
74
ONNXハンズオン
NearMeの技術発表資料です
PRO
May 24, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
20
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
18
ローカルLLM
nearme_tech
PRO
0
30
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
17
Box-Muller法
nearme_tech
PRO
1
30
Kiro触ってみた
nearme_tech
PRO
0
210
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
480
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
120
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
72
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
700
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
A designer walks into a library…
pauljervisheath
210
24k
Visualization
eitanlees
150
16k
Making Projects Easy
brettharned
120
6.5k
Side Projects
sachag
455
43k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Building an army of robots
kneath
306
46k
4 Signs Your Business is Dying
shpigford
186
22k
Code Review Best Practice
trishagee
73
19k
Transcript
0 ONNXハンズオン 2024-05-24 第91回NearMe技術勉強会 Takuma KAKINOUE
1 ONNXとは • Open Neural Network eXchangeの略 • ある機械学習フレームワークで訓練したモデルを、統⼀されたフォーマットに 出⼒し(.onnxファイル)、ONNXランタイムが含まれる任意の環境で推論を実
⾏可能にしようというもの • 例えば、Pythonで訓練したPytorchのNNモデルを使って、TypeScriptやC#上 でも推論(not 訓練)が実⾏可能になる ◦ TypeScriptやC#の環境の中にはONNXランタイムさえインストールされて いれば良い ※ web: https://onnx.ai/ ※ github: https://github.com/onnx/onnx ※ .onnxファイルはProtocol Buffers形式
2 ONNX概略図 ONNXランタイム ONNX Model Zoo 訓練済みモデルをpull 自前で訓練して エクスポート .onnx
ファイル 推論実行 ※ クラウドストレージ等でも可 実行ホストは、 マイコンやコンシューマー ゲーム機など無限の可能 性!! 訓練済みモデルを ダウンロードして 使用可! 今回のハンズオンではPytorchで自前で訓練
3 ONNXハンズオン • Pythonで⼿書き⽂字を認識するモデルをPytorchで学習し、Javascriptのwebアプリ上 から推論を⾏う ◦ サンプルのレポジトリ:
[email protected]
:kakky-hacker/sandbox.git • ⼿順 ◦
git clone
[email protected]
:kakky-hacker/sandbox.git ◦ cd sandbox/onnx-test ◦ pip install -r requirements.txt ◦ python train.py ▪ mnist.onnxが⽣成される ◦ python -m http.server 8000 ◦ ブラウザからhttp://localhost:8000にアクセス
4 ONNXハンズオン • Canvasに適当な数字を書いてPredictボタンを押すと予測結果が表⽰される 正しく予測できた!
5 ONNXの注意点 • opsetバージョンが存在し、モデルをエクスポートする時に注意しなければならない (https://github.com/onnx/onnx/blob/main/docs/Operators.md) • 全ての演算オペレータが実装されているわけではない ◦ ⼀応、カスタムオペレータという⼿段は存在する •
当たり前だが、推論速度は推論を⾏うハードウェアに依存する ◦ 訓練するハードウェアと推論するハードウェアのマシンスペック差はちゃんと考慮 しなければならない ▪ ONNXランタイムはGPU対応 ▪ ちなみにONNXランタイム⾃体もそこまで遅くなさそう (https://qiita.com/john-rocky/items/caa55453f40f5f444edf)
6 Thank you