Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ONNXハンズオン
Search
NearMeの技術発表資料です
PRO
May 24, 2024
2
36
ONNXハンズオン
NearMeの技術発表資料です
PRO
May 24, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
0
34
確率的プログラミング入門
nearme_tech
PRO
2
35
Observability and OpenTelemetry
nearme_tech
PRO
2
29
観察研究における因果推論
nearme_tech
PRO
1
72
React
nearme_tech
PRO
2
33
Architecture Decision Record (ADR)
nearme_tech
PRO
1
820
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
46
Fractional Derivative!
nearme_tech
PRO
1
37
GitHub Projectsにおける チケットの ステータス更新自動化について
nearme_tech
PRO
1
57
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
50
7.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
For a Future-Friendly Web
brad_frost
175
9.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Building Your Own Lightsaber
phodgson
103
6.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Building Adaptive Systems
keathley
38
2.3k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Transcript
0 ONNXハンズオン 2024-05-24 第91回NearMe技術勉強会 Takuma KAKINOUE
1 ONNXとは • Open Neural Network eXchangeの略 • ある機械学習フレームワークで訓練したモデルを、統⼀されたフォーマットに 出⼒し(.onnxファイル)、ONNXランタイムが含まれる任意の環境で推論を実
⾏可能にしようというもの • 例えば、Pythonで訓練したPytorchのNNモデルを使って、TypeScriptやC#上 でも推論(not 訓練)が実⾏可能になる ◦ TypeScriptやC#の環境の中にはONNXランタイムさえインストールされて いれば良い ※ web: https://onnx.ai/ ※ github: https://github.com/onnx/onnx ※ .onnxファイルはProtocol Buffers形式
2 ONNX概略図 ONNXランタイム ONNX Model Zoo 訓練済みモデルをpull 自前で訓練して エクスポート .onnx
ファイル 推論実行 ※ クラウドストレージ等でも可 実行ホストは、 マイコンやコンシューマー ゲーム機など無限の可能 性!! 訓練済みモデルを ダウンロードして 使用可! 今回のハンズオンではPytorchで自前で訓練
3 ONNXハンズオン • Pythonで⼿書き⽂字を認識するモデルをPytorchで学習し、Javascriptのwebアプリ上 から推論を⾏う ◦ サンプルのレポジトリ:
[email protected]
:kakky-hacker/sandbox.git • ⼿順 ◦
git clone
[email protected]
:kakky-hacker/sandbox.git ◦ cd sandbox/onnx-test ◦ pip install -r requirements.txt ◦ python train.py ▪ mnist.onnxが⽣成される ◦ python -m http.server 8000 ◦ ブラウザからhttp://localhost:8000にアクセス
4 ONNXハンズオン • Canvasに適当な数字を書いてPredictボタンを押すと予測結果が表⽰される 正しく予測できた!
5 ONNXの注意点 • opsetバージョンが存在し、モデルをエクスポートする時に注意しなければならない (https://github.com/onnx/onnx/blob/main/docs/Operators.md) • 全ての演算オペレータが実装されているわけではない ◦ ⼀応、カスタムオペレータという⼿段は存在する •
当たり前だが、推論速度は推論を⾏うハードウェアに依存する ◦ 訓練するハードウェアと推論するハードウェアのマシンスペック差はちゃんと考慮 しなければならない ▪ ONNXランタイムはGPU対応 ▪ ちなみにONNXランタイム⾃体もそこまで遅くなさそう (https://qiita.com/john-rocky/items/caa55453f40f5f444edf)
6 Thank you