Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ONNXハンズオン
Search
NearMeの技術発表資料です
PRO
May 24, 2024
2
69
ONNXハンズオン
NearMeの技術発表資料です
PRO
May 24, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rust 並列強化学習
nearme_tech
PRO
0
5
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
57
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
71
Build an AI agent with Mastra
nearme_tech
PRO
0
70
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
37
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
83
AIエージェント for 予約フォーム
nearme_tech
PRO
2
150
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
55
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
A Tale of Four Properties
chriscoyier
160
23k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
YesSQL, Process and Tooling at Scale
rocio
173
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Statistics for Hackers
jakevdp
799
220k
Docker and Python
trallard
45
3.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
108
19k
Transcript
0 ONNXハンズオン 2024-05-24 第91回NearMe技術勉強会 Takuma KAKINOUE
1 ONNXとは • Open Neural Network eXchangeの略 • ある機械学習フレームワークで訓練したモデルを、統⼀されたフォーマットに 出⼒し(.onnxファイル)、ONNXランタイムが含まれる任意の環境で推論を実
⾏可能にしようというもの • 例えば、Pythonで訓練したPytorchのNNモデルを使って、TypeScriptやC#上 でも推論(not 訓練)が実⾏可能になる ◦ TypeScriptやC#の環境の中にはONNXランタイムさえインストールされて いれば良い ※ web: https://onnx.ai/ ※ github: https://github.com/onnx/onnx ※ .onnxファイルはProtocol Buffers形式
2 ONNX概略図 ONNXランタイム ONNX Model Zoo 訓練済みモデルをpull 自前で訓練して エクスポート .onnx
ファイル 推論実行 ※ クラウドストレージ等でも可 実行ホストは、 マイコンやコンシューマー ゲーム機など無限の可能 性!! 訓練済みモデルを ダウンロードして 使用可! 今回のハンズオンではPytorchで自前で訓練
3 ONNXハンズオン • Pythonで⼿書き⽂字を認識するモデルをPytorchで学習し、Javascriptのwebアプリ上 から推論を⾏う ◦ サンプルのレポジトリ:
[email protected]
:kakky-hacker/sandbox.git • ⼿順 ◦
git clone
[email protected]
:kakky-hacker/sandbox.git ◦ cd sandbox/onnx-test ◦ pip install -r requirements.txt ◦ python train.py ▪ mnist.onnxが⽣成される ◦ python -m http.server 8000 ◦ ブラウザからhttp://localhost:8000にアクセス
4 ONNXハンズオン • Canvasに適当な数字を書いてPredictボタンを押すと予測結果が表⽰される 正しく予測できた!
5 ONNXの注意点 • opsetバージョンが存在し、モデルをエクスポートする時に注意しなければならない (https://github.com/onnx/onnx/blob/main/docs/Operators.md) • 全ての演算オペレータが実装されているわけではない ◦ ⼀応、カスタムオペレータという⼿段は存在する •
当たり前だが、推論速度は推論を⾏うハードウェアに依存する ◦ 訓練するハードウェアと推論するハードウェアのマシンスペック差はちゃんと考慮 しなければならない ▪ ONNXランタイムはGPU対応 ▪ ちなみにONNXランタイム⾃体もそこまで遅くなさそう (https://qiita.com/john-rocky/items/caa55453f40f5f444edf)
6 Thank you