Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Argo workflow
Search
Surasit Liangpornrattana
December 19, 2019
Technology
1
120
Argo workflow
Surasit Liangpornrattana
December 19, 2019
Tweet
Share
More Decks by Surasit Liangpornrattana
See All by Surasit Liangpornrattana
Kafka Introduction
nengchakun
2
130
Data Engineering
nengchakun
2
1.2k
Other Decks in Technology
See All in Technology
5分で知るMicrosoft Ignite
taiponrock
PRO
0
270
regrowth_tokyo_2025_securityagent
hiashisan
0
200
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
240
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
560
ChatGPTで論⽂は読めるのか
spatial_ai_network
1
1.1k
研究開発×プロダクトマネジメントへの挑戦 / ly_mlpm_meetup
sansan_randd
0
100
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
820
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
760
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
460
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
1.6k
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
6
380
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building Applications with DynamoDB
mza
96
6.8k
Context Engineering - Making Every Token Count
addyosmani
9
500
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Automating Front-end Workflow
addyosmani
1371
200k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
Transcript
oueogfooeds.f.com BY SURASIT LIANGPORNRATTANA
WHAT IS THE PROBLEM? II En "E"
WORKFLOW # 㱺 ' 㱺 "E" A WORKFLOW CONSISTS of
AN ORCHESTRATED AND REPEATABLE PATTERN OF ACTIVITY - WIKIPEDIA
FLOW INPUT \ * Eq OUTPUT g { ^
DAG DIRECTED of D B - O EASES a A-cycle
o%% Igf) GRAPH of F
WORKFLOW MANAGERS
WHY NOT AIRFLOW ? ⾨t¥¥ TIME CONSTRAINT - INFRASTRUCTURE -
REDS - nxsal - MAINTAINABILITY
WHY ARGO ? IT 1185 CONTAINER- NATIVE - II Tta
- II PARALLEL JOBS
HOW ARGO WORKS ? > a.go submit task - /k"\
t.IE , CR D ET CONTROLLER
task . yaml -- CRD
HOW ARGO WORKS ? > argo submit task . yam
I - /k8SAP- IIE # ETCD CRD waackWh t ' CONTROLLER ⑦ - CREATES /EEEP3 PODS
DAGS A Bt § \ !
RESUBMIT > argo submit task . yaml PODS PODS /IsTEP/I
V i - - - - → /IsTEP/I ✓ I 1 ! i . . . . . . r - I Iv - - - f . - - - Hst3/ X > argo resubmit - - memorized workflow - name
ARTIFACTS 53 COMPATIBLE Igst/c- I - I
WHAT ABOUT SCHDULING ? less CRO N JOB d fz
← task . yami d) argo submit task . yaml
INTEGRATION & DEPLOYMENT f¥⊥o.]MANUALY BUILD EHR" " are CHECKOUT >
argo submit 11¥, task .yaml " I b d DOCKER - KUBECTLAPPLY PUSH DRONJOB
JOB MONITORING ARGO - U2 ENT HANDLER
ARGO VS AIRFLOW
GOOD PARTS VERY CAPABLE LIVE UI AND LOGGING UPDATE OFFER
TIMEOUT AND RETRIES CENTRALIZED LOADING ON less OPERATIONS VIA UI LANGUAGE - AGNOSTIC
BAD PARTS DEPLOYMENT K8S LEARNING CURVE PYTHON - ONLY STABILITY
OPERATIONS ONLY ON CLL
Q&A