Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ubieのデータ品質の検査・維持・向上への取り組み
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
okiyuki
August 22, 2023
Technology
3
2.6k
Ubieのデータ品質の検査・維持・向上への取り組み
2023-08-22 データ基盤管理の考え方 〜dbtの極意〜 Lunch LT の登壇資料です
okiyuki
August 22, 2023
Tweet
Share
More Decks by okiyuki
See All by okiyuki
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
2.2k
dbtとLightdash を社内へ浸透させるまでの取り組み / Integrate dbt and Lightdash into Ubie
okiyuki99
6
1.3k
191016_KDD2019_Reading
okiyuki99
3
2.1k
190928_TokyoR81_Shiny
okiyuki99
3
2.2k
Other Decks in Technology
See All in Technology
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
980
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
Agent Skils
dip_tech
PRO
0
120
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
820
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
170
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
370
Featured
See All Featured
ラッコキーワード サービス紹介資料
rakko
1
2.3M
A Tale of Four Properties
chriscoyier
162
24k
A Modern Web Designer's Workflow
chriscoyier
698
190k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
It's Worth the Effort
3n
188
29k
Skip the Path - Find Your Career Trail
mkilby
0
57
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
GitHub's CSS Performance
jonrohan
1032
470k
Why Our Code Smells
bkeepers
PRO
340
58k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
The SEO identity crisis: Don't let AI make you average
varn
0
290
Transcript
Ubieのデータ品質の検査・維持・向上への取り組み データ基盤管理の考え方 〜dbtの極意〜 Lunch LT 2023 / 08/ 22 Motoyuki
Oki / @okiyuki99
2 自己紹介 Motoyuki Oki X(Twitter): @okiyuki99 今:Ubie 株式会社のアナリティクスエンジニア。 誰もが早く・正確に・安全にデータ利活用できるように、 データ整備
/ データマネジメント / データガバナンス をやっています 最近の関心:引っ越し準備
3 テクノロジーで人々を 適切な医療に案内する 創業背景となる課題意識: • 患者が最適なタイミングで最適な医療機関を 受診できていない • 医師が目の前の患者の病気を熟知しているとは限らない •
医師が最新・最適な治療を知っているとは限らない ミッション
4 toC 主要プロダクト AI問診エンジンをコア技術として、一般生活者・医療機関それぞれへのプロダクトを展開 症状から受診の手がかりがわかる toB 診察事務を1/3に効率化 導入施設 47都道府県 1,400超
利用者数 月間 万人超 700
5 ケーススタディ:希少疾患の患者発見プロジェクトにおける実際の事例 製薬企業との協業で、実際に希少疾患の患者を適切な医療に案内できた事例も出始める ユビー利用による”適切な医療への案内 ” ユーザーのプロファイル • 30代女性 • 20歳の頃から3か月に1回程度激しい
腹痛や下痢に悩まされていた • 手足や顔が腫れることも多く皮膚科を 受診したこともあるが原因はわからず Google検索 ユビー利用 関連病名確認 受診 治療開始 いつもの症状が 出現し不安になり 「手足 腫れる」で検索 ユビーというサービスを発見。 関連病名が調べられるらしい。 早速問診に回答してみる とある難病の可能性が出現。 専門医がいることを知る 長年原因不明だったこともあり、 早速専門医を受診。 どうやらユビーで出てきた病気らしい 薬を処方され、10年以上 悩まされていた症状が 緩和傾向。寛解を目指す
6 Ubieはデータの会社 データの価値 = 事業価値 • データ利活用によるプロダクト改善・グロース活動以外に、顧客レポーティングのようにデータ自体が顧客価値と密接 • (自分目線で)高品質なデータ基盤の構築にエンジニアのリソースを厚く投下している データ品質への思い
• 統計情報だけでなく、一人ひとりのユーザーの行動データ分析が重要 ◦ 1件の数値ズレが情報としての価値を大きく毀損する可能性がある • レポート先が社外であり、顧客との信頼関係の構築も求められる ◦ 社内分析での利活用とは異なり、求められる品質水準が極めて高い →今日はデータ品質の検査・維持・向上の取り組みについて話します
7 (簡単に)Ubie の データ利活用部分アーキテクチャ DWHとしてはBigQuery / dbt は OSSのdbt-coreのみ利用 /
BIツールとしてLightdashを導入中
8 データの品質の検査 ~ dbt test~ データのテスト(not_null / unique / accepted_values
/ …. ) により、期待したデータになってるか検査 Case 1: 特定の期間だけ担保したいときなど、 特定の条件下でのnot_null test ref: データ品質を支える dbt test ~Ubieの事例を添えて~
9 データの品質の検査 ~ dbt test~ データのテスト(not_null / unique / accepted_values
/ …. ) により、期待したデータになってるか検査 Case 2: 意図した数値範囲のデータか test ref: データ品質を支える dbt test ~Ubieの事例を添えて~
10 データの品質の検査 ~ dbt test~ データのテスト(not_null / unique / accepted_values
/ …. ) により、期待したデータになってるか検査 Case 3: 複数カラムで unique testにより テーブル構造の担保・理解しやすくなる ref: データ品質を支える dbt test ~Ubieの事例を添えて~
11 データの品質の維持 dbt testの結果をデータマート開発プロセス上で確認できるように、 CIを整備している 開発時 ref: Ubie Tech Talk
で、「2021/12/14 dbt 運用の7つの疑問と対策」という発表をしました。
12 データの品質の維持 定常業務として、日々・週次の運用を継続して回している 日次 dbt build が毎日キックされるので、エラーがあると Slackに投稿される。エラー時に、 Analytics Engineer
で当番制で確認・1 次対応を行う 週次 Data Engineer + Analytics Engineer の週次MTGのメトリクスとして確認 • elementary の dbt packageを利用。alerts_dbt_models / alerts_dbt_tests のデータを使って独自ダッシュボード構築 • 直近週のエラー結果から見落としないか / 改善できないかの確認 • (dbt以外にも)BigQuery コストや 不適切な利用がないかも確認
13 データの品質の維持 そもそもデータ品質を維持するダッシュボード明瞭化のために dbt exposuresを活用。運用に組み込んでいる 運用例: • ダッシュボード構築系のPBIのチケットテンプレートでサブタスクに明示的に追加 • ダッシュボードオーナーの明示化
◦ チームSlackメンショングループと対応させる • ダッシュボードだけでなく、データマートの変更があったら伝えてほしいチームを明瞭化 ◦ Github PRレビューに入れるなどの判断に利用 • elementary の dbt package の dbt_exposures を使って、ダッシュボードまとめダッシュボードも作れる • 四半期の最終週は、ダッシュボードの棚卸し ◦ 古くなったダッシュボードは exposuresは削除するなど
14 データの品質の向上 データ品質の向上には、データ取得の段階から手をいれるのが肝。各ドメインチームのエンジニアへの浸透が重要。 1.dbt test の エラー時に • testの各エンジニアとの認識合わせ ◦
test実施の浸透 ◦ 別のログを条件にtestした方がよいかどうか 2.データマート開発時に • そのマートをメインで利用するチームのエンジニアへレビュー ◦ 元データが欠損するとどこのtestが落ちるかを理解・浸透 • 新規データの配置やデータ追加については、各チームのエンジニアが実施している(ドキュメント拡充) ◦ 個人情報の確認 ◦ column description ◦ 簡単なdbt testテストの実装
15 データの品質の向上 3.ログ取得の時に • ログテンプレート(Notion)を活用して、野良ログが無くなるように ◦ not null条件やaccepted values テストで制御するための情報
◦ 例:どの画面で発火するか / どういう操作をしたときにログが発火するか / …. • デザインレビュー時には、取得方法や保存方法についてData / Analytics Engineerとのアライン データ品質の向上には、データ取得の段階から手をいれるのが肝。各ドメインチームのエンジニアへの浸透が重要。
16 今後やっていきたいこと オーナーシップ醸成 • Analytics Engineerが初手対応せずとも、各チームが主でデータ品質の向上が進むように • 新しいデータ導入後、dbt test実装まで装着できるように データ利活用のセルフサービス化
• dbtを中心としたデータ利活用の一貫した体験を作るために、Lightdashを用いてセルフサービス化を推し進める • データカタログやデータプライバシー周りとの接合も進行中
17 We are hiring! データ系職種複数募集中です。データ関連職種ページ(QRコード)も最近更新しましたのでぜひご覧ください! カジュアル面談もよければ!