Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Visualisierung raumzeitlicher Meta-Informatione...

Visualisierung raumzeitlicher Meta-Informationen zur Visualisierung nutzer-generierter Geodaten

Presented at Geoinformatik 2012 in Braunschweig, Germany.

Oliver Roick

March 29, 2012
Tweet

More Decks by Oliver Roick

Other Decks in Research

Transcript

  1. Neis, P.; Zielstra, D. & Zipf, A. (2012): The Street

    Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011. Future Internet, 4(1), 1-21
  2. Trame, J. & C. Kessler (2011): Exploring the linage of

    Volunteered Geographic Information with heat maps. GeoViz, Hamburg, Germany.
  3. Min/Max/Avg: ‣ Version number ‣ Number of Contributions per User

    ‣ Number of attributes Sum: ‣ Attributes ‣ Features ‣ Contributing users Area: ‣ Buildings ‣ Landuse ...
  4. +

  5. 3. create SLD 2. process data + OSM 1. OSM

    import Postgres DB Map Server 4. pull data 5. request information Client
  6. attributes id: INT values: DOUBLE FK_attribute_types_id: INT FK_valid (time.id): INT

    FK_expired (time.id): INT FK_cells_id: INT times id: INT timestamp: DATETIME cells id: INT geometry: GEOMETRY attribute_types id: INT attribute: TEXT description: TEXT attribute_001 attribute_002 attribute_003
  7. select attribute_001.id, attribute_001.cell_id, attribute_001.value, cells.the_geom, attribute_types.attribute, timesV.time AS timeValid, timesE.time

    AS timeExpired from attribute_001 left join cells on (attribute_001.cell_id = cells.id) left join times AS timesV on (attribute_001.valid = timesV.id) left join times AS timesE on (attribute_001.expired = timesE.id) left join attribute_types on (attribute_001.attribute_type_id = attribute_types.id) where (timesV.time <= to_timestamp(%dateV%) AND ((timesE.time > to_timestamp(%dateE%)) OR (timesE.time IS NULL)));
  8. GetFeatureInfo "features": [ { "name": "landuse_industrial", "title": "Layer: landuse_industrial", "attributes":

    { "id": "154777", "cell_id": "1166098", "value": "78863.060546875", "the_geom": "POLYGON (...)", "attribute": "landuse_industrial", "timevalid": "21.12.2011 00:00:00", "timeexpired": "26.03.2012 14:32:33" } }, {...} ]
  9. Hagenauer, J. & M. Helbich (2011): Mining urban land-use patterns

    from volunteered geographic information by means of genetic algorithms and artificial neural networks. International Journal of Geographical Information Science. DOI:10.1080/13658816.2011.619501