大規模言語モデル(LLM)の応用例として「AIエージェント」が大きな話題の1つとなっています。
AIエージェントは、与えられた目的に対して、何をすべきか自律的に判断して動作します。 たとえば、必要に応じてWeb上の情報を検索して回答してくれたり、試行錯誤しながらプログラムを実装してくれたりします。
2024年2月現在では、OpenAIのAssistants APIやGPTs、Agents for Amazon BedrockやLangGraphなどがリリースされ、AIエージェントを開発するエコシステムも急速に発展しています。
そんな中、この勉強会では「いまこそ学ぶLLMベースのAIエージェント入門」と題して、LLMベースのAIエージェントの基本を解説します。
LLMベースのAIエージェントの基本的なしくみ(MRKLやReActなど)や各種開発ツール、有名なOSSや論文で実装されたAIエージェントの工夫を紹介します。
===