Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
100
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
9
Extending Flask using the Flask Plugins API
osdotsystem
0
73
PEPs that hit the front page
osdotsystem
0
65
libSQL: Taking Sqlite To The Moon
osdotsystem
0
170
Boosting Python With Rust 🚀
osdotsystem
0
170
Flet: Flutter in Python
osdotsystem
0
370
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
190
Python Bytecode or How Python Operates
osdotsystem
0
260
Other Decks in Programming
See All in Programming
requirements with math
moony
0
520
爆速スッキリ! Rspack 移行の成果と道のり - Muddy Web #11
dora1998
1
150
AI Agents with JavaScript
slobodan
0
120
Boost Your Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
140
AIエージェントを活用したアプリ開発手法の模索
kumamotone
1
750
‘무차별 LGTM~👍’만 외치던 우리가 ‘고봉밥 코드 리뷰’를?
hannah0731
0
530
php-fpm がリクエスト処理する仕組みを追う / Tracing-How-php-fpm-Handles-Requests
shin1x1
5
830
Go1.24で testing.B.Loopが爆誕
kuro_kurorrr
0
160
複雑なフォームと複雑な状態管理にどう向き合うか / #newt_techtalk vol. 15
izumin5210
4
3.3k
goにおける コネクションプールの仕組み を軽く掘って見た
aronokuyama
0
140
20250326_生成AIによる_レビュー承認システムの実現.pdf
takahiromatsui
17
5.6k
プログラミング教育のコスパの話
superkinoko
0
120
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
12
1.4k
Music & Morning Musume
bryan
46
6.4k
Docker and Python
trallard
44
3.3k
We Have a Design System, Now What?
morganepeng
51
7.5k
A better future with KSS
kneath
238
17k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Facilitating Awesome Meetings
lara
53
6.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
177
52k
Gamification - CAS2011
davidbonilla
81
5.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
16
1.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47