Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
73
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Extending Flask using the Flask Plugins API
osdotsystem
0
35
PEPs that hit the front page
osdotsystem
0
38
libSQL: Taking Sqlite To The Moon
osdotsystem
0
130
Boosting Python With Rust 🚀
osdotsystem
0
130
Flet: Flutter in Python
osdotsystem
0
300
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.6k
Fast Flask Dev For Big Codebases
osdotsystem
0
160
Python Bytecode or How Python Operates
osdotsystem
0
230
How To OpenSource
osdotsystem
0
130
Other Decks in Programming
See All in Programming
OnlineTestConf: Test Automation Friend or Foe
maaretp
0
100
Hotwire or React? ~アフタートーク・本編に含めなかった話~ / Hotwire or React? after talk
harunatsujita
1
120
役立つログに取り組もう
irof
28
9.6k
よくできたテンプレート言語として TypeScript + JSX を利用する試み / Using TypeScript + JSX outside of Web Frontend #TSKaigiKansai
izumin5210
5
1.7k
Jakarta EE meets AI
ivargrimstad
0
110
3rd party scriptでもReactを使いたい! Preact + Reactのハイブリッド開発
righttouch
PRO
1
600
C++でシェーダを書く
fadis
6
4.1k
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
100
みんなでプロポーザルを書いてみた
yuriko1211
0
260
ECS Service Connectのこれまでのアップデートと今後のRoadmapを見てみる
tkikuc
2
250
イベント駆動で成長して委員会
happymana
1
320
TypeScriptでライブラリとの依存を限定的にする方法
tutinoko
2
650
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
180
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
How to Ace a Technical Interview
jacobian
276
23k
Thoughts on Productivity
jonyablonski
67
4.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
670
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Scaling GitHub
holman
458
140k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47