Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
140
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
26
Extending Flask using the Flask Plugins API
osdotsystem
0
110
PEPs that hit the front page
osdotsystem
0
93
libSQL: Taking Sqlite To The Moon
osdotsystem
0
200
Boosting Python With Rust 🚀
osdotsystem
0
200
Flet: Flutter in Python
osdotsystem
0
440
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
230
Python Bytecode or How Python Operates
osdotsystem
0
310
Other Decks in Programming
See All in Programming
旅行プランAIエージェント開発の裏側
ippo012
2
780
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
380
時間軸から考えるTerraformを使う理由と留意点
fufuhu
12
4k
もうちょっといいRubyプロファイラを作りたい (2025)
osyoyu
0
240
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
120
Updates on MLS on Ruby (and maybe more)
sylph01
1
180
OSS開発者という働き方
andpad
5
1.6k
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
1k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
310
Kiroの仕様駆動開発から見えてきたAIコーディングとの正しい付き合い方
clshinji
1
200
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
410
UbieのAIパートナーを支えるコンテキストエンジニアリング実践
syucream
2
810
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Code Review Best Practice
trishagee
70
19k
How STYLIGHT went responsive
nonsquared
100
5.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
A designer walks into a library…
pauljervisheath
207
24k
The Cult of Friendly URLs
andyhume
79
6.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Documentation Writing (for coders)
carmenintech
73
5k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47