Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
130
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
22
Extending Flask using the Flask Plugins API
osdotsystem
0
110
PEPs that hit the front page
osdotsystem
0
88
libSQL: Taking Sqlite To The Moon
osdotsystem
0
200
Boosting Python With Rust 🚀
osdotsystem
0
190
Flet: Flutter in Python
osdotsystem
0
420
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
220
Python Bytecode or How Python Operates
osdotsystem
0
300
Other Decks in Programming
See All in Programming
Quality Gates in the Age of Agentic Coding
helmedeiros
PRO
1
100
商品比較サービス「マイベスト」における パーソナライズレコメンドの第一歩
ucchiii43
0
200
構造化・自動化・ガードレール - Vibe Coding実践記 -
tonegawa07
0
150
AI Ramen Fight
yusukebe
0
110
レトロゲームから学ぶ通信技術の歴史
kimkim0106
0
130
脱Riverpod?fqueryで考える、TanStack Queryライクなアーキテクチャの可能性
ostk0069
0
560
AI Agent 時代のソフトウェア開発を支える AWS Cloud Development Kit (CDK)
konokenj
6
980
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
6
1.3k
バイブスあるコーディングで ~PHP~ 便利ツールをつくるプラクティス
uzulla
1
280
なぜあなたのオブザーバビリティ導入は頓挫するのか
ryota_hnk
3
460
iOS開発スターターキットの作り方
akidon0000
0
190
副作用と戦う PHP リファクタリング ─ ドメインイベントでビジネスロジックを解きほぐす
kajitack
3
460
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
Raft: Consensus for Rubyists
vanstee
140
7k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
For a Future-Friendly Web
brad_frost
179
9.8k
Visualization
eitanlees
146
16k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Typedesign – Prime Four
hannesfritz
42
2.7k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47