Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
120
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
16
Extending Flask using the Flask Plugins API
osdotsystem
0
98
PEPs that hit the front page
osdotsystem
0
82
libSQL: Taking Sqlite To The Moon
osdotsystem
0
190
Boosting Python With Rust 🚀
osdotsystem
0
180
Flet: Flutter in Python
osdotsystem
0
410
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
210
Python Bytecode or How Python Operates
osdotsystem
0
290
Other Decks in Programming
See All in Programming
プロダクト開発でも使おう 関数のオーバーロード
yoiwamoto
0
160
GoのWebAssembly活用パターン紹介
syumai
3
10k
レガシーシステムの機能調査・開発におけるAI利活用
takuya_ohtonari
0
610
関数型まつりレポート for JuliaTokai #22
antimon2
0
130
ASP.NETアプリケーションのモダナイズ インフラ編
tomokusaba
1
380
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
770
KotlinConf 2025 現地で感じたServer-Side Kotlin
n_takehata
1
220
Perplexity Slack Botを作ってAI活用を進めた話 / AI Engineering Summit プレイベント
n3xem
0
670
単体テストの始め方/作り方
toms74209200
0
510
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
3
960
XSLTで作るBrainfuck処理系
makki_d
0
210
Bytecode Manipulation 으로 생산성 높이기
bigstark
2
360
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
A better future with KSS
kneath
239
17k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Making Projects Easy
brettharned
116
6.2k
How GitHub (no longer) Works
holman
314
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Producing Creativity
orderedlist
PRO
346
40k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47