Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
150
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
40
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
100
libSQL: Taking Sqlite To The Moon
osdotsystem
0
210
Boosting Python With Rust 🚀
osdotsystem
0
210
Flet: Flutter in Python
osdotsystem
0
470
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
240
Python Bytecode or How Python Operates
osdotsystem
0
320
Other Decks in Programming
See All in Programming
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
460
Level up your Gemini CLI - D&D Style!
palladius
1
110
TypeScript 5.9で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
390
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
14
13k
Rails Girls Sapporo 2ndの裏側―準備の日々から見えた、私が得たもの / SAPPORO ENGINEER BASE #11
lemonade_37
2
190
Web エンジニアが JavaScript で AI Agent を作る / JSConf JP 2025 sponsor session
izumin5210
4
2k
「AWS CDK入門」の前日譚/Prequelto-Introduction-To-AWSCDK
tyumugi1113
0
100
Developing Specifications - Jakarta EE: a Real World Example
ivargrimstad
0
190
Flutterアプリ運用の現場で役立った監視Tips 5選
ostk0069
1
510
知られているようで知られていない JavaScriptの仕様 4選
syumai
0
630
「正規表現をつくる」をつくる / make "make regex"
makenowjust
1
760
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
39
13k
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
It's Worth the Effort
3n
187
29k
Code Review Best Practice
trishagee
72
19k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
A better future with KSS
kneath
239
18k
Balancing Empowerment & Direction
lara
5
760
Measuring & Analyzing Core Web Vitals
bluesmoon
9
680
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Done Done
chrislema
186
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47