Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
140
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
29
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
95
libSQL: Taking Sqlite To The Moon
osdotsystem
0
210
Boosting Python With Rust 🚀
osdotsystem
0
200
Flet: Flutter in Python
osdotsystem
0
450
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
230
Python Bytecode or How Python Operates
osdotsystem
0
310
Other Decks in Programming
See All in Programming
Playwrightはどのようにクロスブラウザをサポートしているのか
yotahada3
7
2.3k
(Extension DC 2025) Actor境界を越える技術
teamhimeh
1
220
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3k
iOS 17で追加されたSubscriptionStoreView を利用して5分でサブスク実装チャレンジ
natmark
0
580
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
230
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
110
GraphQL×Railsアプリのデータベース負荷分散 - 月間3,000万人利用サービスを無停止で
koxya
1
1.1k
AIエージェント時代における TypeScriptスキーマ駆動開発の新たな役割
bicstone
4
1.5k
どの様にAIエージェントと 協業すべきだったのか?
takefumiyoshii
2
600
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
450
階層構造を表現するデータ構造とリファクタリング 〜1年で10倍成長したプロダクトの変化と課題〜
yuhisatoxxx
3
910
CSC509 Lecture 04
javiergs
PRO
0
290
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
224
10k
Being A Developer After 40
akosma
91
590k
Agile that works and the tools we love
rasmusluckow
331
21k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
How GitHub (no longer) Works
holman
315
140k
We Have a Design System, Now What?
morganepeng
53
7.8k
Become a Pro
speakerdeck
PRO
29
5.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Music & Morning Musume
bryan
46
6.8k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47