Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
170
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
64
Extending Flask using the Flask Plugins API
osdotsystem
0
130
PEPs that hit the front page
osdotsystem
0
110
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
220
Flet: Flutter in Python
osdotsystem
0
500
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.8k
Fast Flask Dev For Big Codebases
osdotsystem
0
250
Python Bytecode or How Python Operates
osdotsystem
0
330
Other Decks in Programming
See All in Programming
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
16
5.5k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
110
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
180
Package Management Learnings from Homebrew
mikemcquaid
0
180
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
200
SourceGeneratorのススメ
htkym
0
180
AgentCoreとHuman in the Loop
har1101
5
210
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
200
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
440
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
[SF Ruby Conf 2025] Rails X
palkan
0
740
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
We Have a Design System, Now What?
morganepeng
54
8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
Optimizing for Happiness
mojombo
379
71k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
230
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Claude Code のすすめ
schroneko
67
210k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47