Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
170
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
66
Extending Flask using the Flask Plugins API
osdotsystem
0
130
PEPs that hit the front page
osdotsystem
0
110
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
220
Flet: Flutter in Python
osdotsystem
0
500
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.8k
Fast Flask Dev For Big Codebases
osdotsystem
0
250
Python Bytecode or How Python Operates
osdotsystem
0
330
Other Decks in Programming
See All in Programming
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
CSC307 Lecture 02
javiergs
PRO
1
780
CSC307 Lecture 05
javiergs
PRO
0
500
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
AI時代の認知負荷との向き合い方
optfit
0
160
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
660
並行開発のためのコードレビュー
miyukiw
0
1.1k
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Featured
See All Featured
How to Ace a Technical Interview
jacobian
281
24k
It's Worth the Effort
3n
188
29k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Raft: Consensus for Rubyists
vanstee
141
7.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Discover your Explorer Soul
emna__ayadi
2
1.1k
Between Models and Reality
mayunak
1
190
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
97
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Accessibility Awareness
sabderemane
0
56
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47