Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
120
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
19
Extending Flask using the Flask Plugins API
osdotsystem
0
100
PEPs that hit the front page
osdotsystem
0
85
libSQL: Taking Sqlite To The Moon
osdotsystem
0
190
Boosting Python With Rust 🚀
osdotsystem
0
190
Flet: Flutter in Python
osdotsystem
0
410
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
210
Python Bytecode or How Python Operates
osdotsystem
0
290
Other Decks in Programming
See All in Programming
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
240
CursorはMCPを使った方が良いぞ
taigakono
1
220
Goで作る、開発・CI環境
sin392
0
190
LINEヤフー データグループ紹介
lycorp_recruit_jp
0
1.7k
Deep Dive into ~/.claude/projects
hiragram
10
2.2k
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
4
260
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
340
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
670
Systèmes distribués, pour le meilleur et pour le pire - BreizhCamp 2025 - Conférence
slecache
0
120
都市をデータで見るってこういうこと PLATEAU属性情報入門
nokonoko1203
1
590
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
140
AIコーディング道場勉強会#2 君(エンジニア)たちはどう生きるか
misakiotb
1
280
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
94
6.1k
It's Worth the Effort
3n
185
28k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Being A Developer After 40
akosma
90
590k
Producing Creativity
orderedlist
PRO
346
40k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
680
Into the Great Unknown - MozCon
thekraken
39
1.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
230
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Fireside Chat
paigeccino
37
3.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47