Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
150
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
44
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
100
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
210
Flet: Flutter in Python
osdotsystem
0
480
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
240
Python Bytecode or How Python Operates
osdotsystem
0
320
Other Decks in Programming
See All in Programming
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
310
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
730
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
310
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
710
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
390
AIコーディングエージェント(NotebookLM)
kondai24
0
190
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
150
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
110
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
tparseでgo testの出力を見やすくする
utgwkk
2
220
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
6
2.1k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Code Reviewing Like a Champion
maltzj
527
40k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Language of Interfaces
destraynor
162
25k
Statistics for Hackers
jakevdp
799
230k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Faster Mobile Websites
deanohume
310
31k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47