Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
160
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
54
Extending Flask using the Flask Plugins API
osdotsystem
0
130
PEPs that hit the front page
osdotsystem
0
110
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
220
Flet: Flutter in Python
osdotsystem
0
490
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.8k
Fast Flask Dev For Big Codebases
osdotsystem
0
250
Python Bytecode or How Python Operates
osdotsystem
0
330
Other Decks in Programming
See All in Programming
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
430
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
510
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
160
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
150
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
150
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
230
AtCoder Conference 2025
shindannin
0
870
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
5
1.5k
Patterns of Patterns
denyspoltorak
0
410
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Designing Experiences People Love
moore
143
24k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Color Theory Basics | Prateek | Gurzu
gurzu
0
160
Designing for humans not robots
tammielis
254
26k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Typedesign – Prime Four
hannesfritz
42
2.9k
Abbi's Birthday
coloredviolet
0
4.1k
Skip the Path - Find Your Career Trail
mkilby
0
29
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47