Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DynamicでScalableな空間分割データ構造Bkd-Tree
Search
Takatomo Torigoe
November 27, 2020
Programming
0
1.1k
DynamicでScalableな空間分割データ構造Bkd-Tree
社内勉強会資料です。
Takatomo Torigoe
November 27, 2020
Tweet
Share
More Decks by Takatomo Torigoe
See All by Takatomo Torigoe
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
1k
AI動画生成ガチャ紹介
piyo7
1
360
AIイラスト生成・編集テクニック紹介
piyo7
2
460
PandasAIにおけるLLMを用いた自然言語クエリの仕組み
piyo7
0
540
HdrHistogram紹介:ストリーミングで統計値を算出するための 高速・省メモリなライブラリ
piyo7
0
440
AI画像生成の紹介スライドをAI画像とAIチャットで作ってみた
piyo7
0
360
将棋AI「dlshogi」紹介
piyo7
1
1k
軌跡検索エンジンT-Torch論文紹介
piyo7
0
280
アドテクと機械学習
piyo7
0
380
Other Decks in Programming
See All in Programming
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
150
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
240
gunshi
kazupon
1
140
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
750
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
TestingOsaka6_Ozono
o3
0
260
GoLab2025 Recap
kuro_kurorrr
0
790
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3.3k
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
愛される翻訳の秘訣
kishikawakatsumi
3
370
Featured
See All Featured
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Building Adaptive Systems
keathley
44
2.9k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
84
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
The Curious Case for Waylosing
cassininazir
0
200
Music & Morning Musume
bryan
46
7k
Odyssey Design
rkendrick25
PRO
0
450
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Navigating Team Friction
lara
191
16k
How to build a perfect <img>
jonoalderson
1
4.8k
Transcript
Dynamic で Scalable な 空間分割データ構造 Bkd-Tree 鳥越貴智 2020/11/27 データサイエンス共有会 #meetup_ds
Bkd-Tree? 全文検索エンジンElasticsearchで、地理インデックスとして使われている。 BKD-backed geo_shapes in Elasticsearch: precision + efficiency +
speed Geospatial Advancements in Elasticsearch Elasticsearchのコアである Apache Luceneで実装されている。 org.apache.lucene.util.bkd
Bkd-Tree? kd-Treeの亜種。ざっくり言うとforest of balanced binary kd-trees。 kd-Treeについては「k-d treeによる最近傍探索」が分かりやすい。 K-D-B-Treeよりもディスク使用率が高く追加コストを安くした、という触れ込み のためK-D-B-Treeから紹介します。
ちなみにK-D-B-TreeはWikipediaに英文記事があるものの、Bkd-Treeの解説記事 はほぼ無く「The Bkd Tree: A Dynamic Disk Optimized BSP Tree」くらい。
K-D-B-Tree The K-D-B-Tree : a search structure for large multidimensional
dynamic indexes (1981)
range query を想定 [K-D-B-Tree] Data Structure Region Pages Point Pages
平衡多分木 1 Nodeを 1 Pageに メモリ配置
[K-D-B-Tree] Insertions 1. 木を辿って、Pointの位置を含むPoint Pageを探し、Pointを追加する。 2. Pointが増えてPoint Pageが溢れたら、Regionを分割する。 3. Regionが増えてRegion
Pageが溢れたら、さらに親のRegionを分割する。 親Regionの分割は、 子Regionの分割を引き起こすため、 コストが高い。
[K-D-B-Tree] Splitting Patterns ] Pointの分布特性を知っているならば、 Cyclic以外の分割パターンの方がいい場合もある。
[K-D-B-Tree] Deletions and Reorganization 1. Pointが属するPoint Pageから、Pointを削除する。 2. ストレージ使用率が減ってきたらリバランス。 (リバランス例)
Region Page A, B, Cの使用率が半分を切ったため、 どれか二つを合体させたいが、 長方形にするためには三つ合体させないといけない。 しかし三つ合体すると溢れるため、 二つの長方形に再分割を行う必要がある。
[K-D-B-Tree] Utilization 空のK-D-B Treeに 一様乱数で発生させた100,000Points をCyclicに分割してInsertした実験
Bkd-Tree Bkd-Tree: A Dynamic Scalable kd-Tree (2003)
[Bkd-Tree] Main Idea • K-D-B-Treeは追加削除時にリバランスすることでクエリ性能を保つ代わり、 ストレージ使用率が低下する。(その後に提案されたhB-Treeも同じ) • Bkd-Treeはリバランスせず、後述の「Bulk Load」「Logarithmic Method」
という手法によって、ストレージをほぼ100%で使いきる。 // Bkd-Treeの論文はPageではなくBlockで使用率を考えている。K-D-B-Treeも 1 Node 1 Pageに拘らなければ、キャッシュヒット落とさず使用率上げる 実装はできる気がするものの、これは現代の感覚か(?) // 使用率は置いておいても、枝の数がまちまちだとクエリ性能落ちるので、 できるだけ木をコンパクトにするのは重要なはず。
[Bkd-Tree] Bulk Load • Bkd-Treeは2分木 ◦ 葉は一定数のPointを保持する。 ◦ 葉のインデックスのシフト演算で、子 ノードのポインタを置き換えられる。
• 空の木に1点ずつ追加するのではなく、ま とめて木を構築する。 (not Dynamic) • 1階層ごとにソートして分割位置を決める のではなく、グリッド行列で一気に掘る。
[Bkd-Tree] Logarithmic Method • サイズが指数的に膨らんでいく木の列をなす。ただし列は欠けてもよい。 • クエリは並列的に投げる。 • Point追加は、メモリ上のバッファ木 に対して行う。 ◦
これはリバランスせず、Leafを大きくしたり深くしたりするはず。 • バッファ木が溢れたら、ストレージ上の木とBulk Loadによってマージ。 ◦ 下図の場合 をマージして、 size 4Mの を作り出し、 を空にする。
[Bkd-Tree] Insertion Performance • Bkd-Treeは、追加コストがK-B-D-Treeより2桁安い。 ◦ 木のマージ自体はコスト高いが、その間もクエリは投げられる。