Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DynamicでScalableな空間分割データ構造Bkd-Tree
Search
Takatomo Torigoe
November 27, 2020
Programming
0
750
DynamicでScalableな空間分割データ構造Bkd-Tree
社内勉強会資料です。
Takatomo Torigoe
November 27, 2020
Tweet
Share
More Decks by Takatomo Torigoe
See All by Takatomo Torigoe
AIイラスト生成・編集テクニック紹介
piyo7
2
270
PandasAIにおけるLLMを用いた自然言語クエリの仕組み
piyo7
0
360
HdrHistogram紹介:ストリーミングで統計値を算出するための 高速・省メモリなライブラリ
piyo7
0
260
AI画像生成の紹介スライドをAI画像とAIチャットで作ってみた
piyo7
0
300
将棋AI「dlshogi」紹介
piyo7
1
570
軌跡検索エンジンT-Torch論文紹介
piyo7
0
180
アドテクと機械学習
piyo7
0
310
Let's Simulate a Quantum Computer with Pretty Scala
piyo7
0
31
量子コンピュータでニューラルネットワークな論文紹介
piyo7
0
38
Other Decks in Programming
See All in Programming
これでLambdaが不要に?!Step FunctionsのJSONata対応について
iwatatomoya
2
3.6k
Fibonacci Function Gallery - Part 1
philipschwarz
PRO
0
210
DevFest Tokyo 2025 - Flutter のアプリアーキテクチャ現在地点
wasabeef
5
900
htmxって知っていますか?次世代のHTML
hiro_ghap1
0
330
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
4
250
ゆるやかにgolangci-lintのルールを強くする / Kyoto.go #56
utgwkk
1
370
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
930
KubeCon + CloudNativeCon NA 2024 Overviewat Kubernetes Meetup Tokyo #68 / amsy810_k8sjp68
masayaaoyama
0
250
快速入門可觀測性
blueswen
0
340
Итераторы в Go 1.23: зачем они нужны, как использовать, и насколько они быстрые?
lamodatech
0
730
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
770
PSR-15 はあなたのための ものではない? - phpcon2024
myamagishi
0
100
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Six Lessons from altMBA
skipperchong
27
3.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
A Tale of Four Properties
chriscoyier
157
23k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Facilitating Awesome Meetings
lara
50
6.1k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Rails Girls Zürich Keynote
gr2m
94
13k
Done Done
chrislema
181
16k
Designing for humans not robots
tammielis
250
25k
Music & Morning Musume
bryan
46
6.2k
Transcript
Dynamic で Scalable な 空間分割データ構造 Bkd-Tree 鳥越貴智 2020/11/27 データサイエンス共有会 #meetup_ds
Bkd-Tree? 全文検索エンジンElasticsearchで、地理インデックスとして使われている。 BKD-backed geo_shapes in Elasticsearch: precision + efficiency +
speed Geospatial Advancements in Elasticsearch Elasticsearchのコアである Apache Luceneで実装されている。 org.apache.lucene.util.bkd
Bkd-Tree? kd-Treeの亜種。ざっくり言うとforest of balanced binary kd-trees。 kd-Treeについては「k-d treeによる最近傍探索」が分かりやすい。 K-D-B-Treeよりもディスク使用率が高く追加コストを安くした、という触れ込み のためK-D-B-Treeから紹介します。
ちなみにK-D-B-TreeはWikipediaに英文記事があるものの、Bkd-Treeの解説記事 はほぼ無く「The Bkd Tree: A Dynamic Disk Optimized BSP Tree」くらい。
K-D-B-Tree The K-D-B-Tree : a search structure for large multidimensional
dynamic indexes (1981)
range query を想定 [K-D-B-Tree] Data Structure Region Pages Point Pages
平衡多分木 1 Nodeを 1 Pageに メモリ配置
[K-D-B-Tree] Insertions 1. 木を辿って、Pointの位置を含むPoint Pageを探し、Pointを追加する。 2. Pointが増えてPoint Pageが溢れたら、Regionを分割する。 3. Regionが増えてRegion
Pageが溢れたら、さらに親のRegionを分割する。 親Regionの分割は、 子Regionの分割を引き起こすため、 コストが高い。
[K-D-B-Tree] Splitting Patterns ] Pointの分布特性を知っているならば、 Cyclic以外の分割パターンの方がいい場合もある。
[K-D-B-Tree] Deletions and Reorganization 1. Pointが属するPoint Pageから、Pointを削除する。 2. ストレージ使用率が減ってきたらリバランス。 (リバランス例)
Region Page A, B, Cの使用率が半分を切ったため、 どれか二つを合体させたいが、 長方形にするためには三つ合体させないといけない。 しかし三つ合体すると溢れるため、 二つの長方形に再分割を行う必要がある。
[K-D-B-Tree] Utilization 空のK-D-B Treeに 一様乱数で発生させた100,000Points をCyclicに分割してInsertした実験
Bkd-Tree Bkd-Tree: A Dynamic Scalable kd-Tree (2003)
[Bkd-Tree] Main Idea • K-D-B-Treeは追加削除時にリバランスすることでクエリ性能を保つ代わり、 ストレージ使用率が低下する。(その後に提案されたhB-Treeも同じ) • Bkd-Treeはリバランスせず、後述の「Bulk Load」「Logarithmic Method」
という手法によって、ストレージをほぼ100%で使いきる。 // Bkd-Treeの論文はPageではなくBlockで使用率を考えている。K-D-B-Treeも 1 Node 1 Pageに拘らなければ、キャッシュヒット落とさず使用率上げる 実装はできる気がするものの、これは現代の感覚か(?) // 使用率は置いておいても、枝の数がまちまちだとクエリ性能落ちるので、 できるだけ木をコンパクトにするのは重要なはず。
[Bkd-Tree] Bulk Load • Bkd-Treeは2分木 ◦ 葉は一定数のPointを保持する。 ◦ 葉のインデックスのシフト演算で、子 ノードのポインタを置き換えられる。
• 空の木に1点ずつ追加するのではなく、ま とめて木を構築する。 (not Dynamic) • 1階層ごとにソートして分割位置を決める のではなく、グリッド行列で一気に掘る。
[Bkd-Tree] Logarithmic Method • サイズが指数的に膨らんでいく木の列をなす。ただし列は欠けてもよい。 • クエリは並列的に投げる。 • Point追加は、メモリ上のバッファ木 に対して行う。 ◦
これはリバランスせず、Leafを大きくしたり深くしたりするはず。 • バッファ木が溢れたら、ストレージ上の木とBulk Loadによってマージ。 ◦ 下図の場合 をマージして、 size 4Mの を作り出し、 を空にする。
[Bkd-Tree] Insertion Performance • Bkd-Treeは、追加コストがK-B-D-Treeより2桁安い。 ◦ 木のマージ自体はコスト高いが、その間もクエリは投げられる。