Upgrade to Pro — share decks privately, control downloads, hide ads and more …

軌跡検索エンジンT-Torch論文紹介

 軌跡検索エンジンT-Torch論文紹介

社内勉強会資料です。

Takatomo Torigoe

February 26, 2021
Tweet

More Decks by Takatomo Torigoe

Other Decks in Programming

Transcript

  1. T-Torch (Paper) Torch: a Search Engine for Trajectory Data (ACM

    SIGIR 2018) 第一著者のSheng Wangは、この後も軌跡系の論文を発表している。 • Fast Large-Scale Trajectory Clustering (PVLDB 14) • A Survey on Trajectory Data Management, Analytics, and Learning (SIGMOD 2021)
  2. T-Torch (Code) tgbnhy/torch-trajectory: The World's First Search Engine for Trajectory

    Data Javaで書かれているが、Maven Centralなどでのパッケージ公開はしていない様 子。「git clone」すれば「mvn package」で、jarのビルドはできる。 ライセンスも宣言されていないため、あくまで論文実装という雰囲気。OSSとし て整備すれば需要はありそうだが……。
  3. Similarity Measures(記号列系) • Longest Overlapping Road Segment (LORS): 提案類似度。LCSSの亜種。 •

    Longest Common Subsequence (LCSS): 最長共通部分列長。 • Edit Distance on Real sequence (EDR): 近ければ一致とみなす編集距離。 マップマッチング済みの エッジ長を足しこむ つまり重みのあるLCSS いかにも 動的計画法な 再帰式
  4. Similarity Measures(点の距離ベース) • Dynamic Time Warping (DTW): 時系列データの類似度。点の数依存。 • Hausdorff

    Distance: 部分空間の距離。 • Frechet Distance: 犬のリードに例えられる距離。
  5. Edge Inverted Index Patched Frame of reference on Deltas (PFor-Delta)

    は、差分列をブロックごとに基準値から差分を取る。 Variable Byte (VByte) は、バイトごとに先頭1ビットを使って可変長数値を区切る。 どちらも転置インデックスでよく使われる圧縮方式らしい。 第11回 転置索引の圧縮:検索エンジンはいかにして動くのか?|gihyo.jp trajectory id → edge position → 同じエッジ持つ軌跡 が近くなるように IDを振り直して 圧縮効率を上げる 赤く囲ったところを Edge Inverted Index として最終的に保存 1 2 3 4
  6.   Pruning for LCSS/EDR 以下、LORSと同じ。 19行、20行は、 LORSは上限値計算時の共通部分列を覚えていれば、 軌跡の全エッジを覚えてなくてもいいよね、 他の類似度だとそういうことはできないよね、 という主張のようだが、LCSSでも同様のことはできるはず。

    クエリ軌跡に含まれるバーテックスqごとに、 半径τ内に含まれるセルq’についてグリッドインデックスI_vを引いて、 セルq’を通る軌跡を候補集合canに加える。 元論文では、 LCSS/EDRはマップマッチングせず、 距離τ内のバーテックスを一致とみなす。 類似度選択とマップマッチングは別軸なので ちょっとズルい比較な気がする。 空間インデックスであれば R木やkd木など グリッドでなくてもよい。