Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to do regexp analysis
Search
Iskander (Alex) Sharipov
April 25, 2020
Programming
0
300
How to do regexp analysis
Iskander (Alex) Sharipov
April 25, 2020
Tweet
Share
More Decks by Iskander (Alex) Sharipov
See All by Iskander (Alex) Sharipov
quasigo
quasilyte
0
58
Go gamedev: XM music
quasilyte
0
120
Zero alloc pathfinding
quasilyte
0
500
Mycelium
quasilyte
0
65
Roboden game pitch
quasilyte
0
210
Ebitengine Ecosystem Overview
quasilyte
1
890
Go gamedev patterns
quasilyte
0
470
profile-guided code analysis
quasilyte
0
360
Go inlining
quasilyte
0
120
Other Decks in Programming
See All in Programming
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
920
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
230
クラシルを支える技術と組織
rakutek
0
190
CSC509 Lecture 06
javiergs
PRO
0
240
階層構造を表現するデータ構造とリファクタリング 〜1年で10倍成長したプロダクトの変化と課題〜
yuhisatoxxx
3
920
Web技術を最大限活用してRAW画像を現像する / Developing RAW Images on the Web
ssssota
2
1.2k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
130
Advance Your Career with Open Source
ivargrimstad
0
330
ネイティブ製ガントチャートUIを作って学ぶUICollectionViewLayoutの威力
jrsaruo
0
130
2025年版 サーバーレス Web アプリケーションの作り方
hayatow
23
25k
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
4.4k
NetworkXとGNNで学ぶグラフデータ分析入門〜複雑な関係性を解き明かすPythonの力〜
mhrtech
3
1k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Into the Great Unknown - MozCon
thekraken
40
2.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
Optimizing for Happiness
mojombo
379
70k
Navigating Team Friction
lara
189
15k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Site-Speed That Sticks
csswizardry
11
880
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Music & Morning Musume
bryan
46
6.8k
GitHub's CSS Performance
jonrohan
1032
460k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
How to do regexp analysis @quasilyte / GolangKazan 2020
Not why, but how Implementation advice and potential issues overview.
go-critic NoVerify Open-Source analyzers
Discussion plan • Handling regexp syntax • Analyzing regexp flow
• Finding bugs in regular expressions • Regexp rewriting
Handling regexp syntax
Why making own parser? Most regexp libraries use parsers that
give up on the first error. For analysis, we need rich AST (parse tree even) and error-tolerant parser.
Writing a parser Useful resources: • Regexp syntax docs (BNF,
re2-syntax) • Pratt parsers tutorial (RU, EN) • Regexp corpus for tests (gist) • Dialect-specific documentation
Composition operators Only two: • Concatenation: xy (“x” followed by
“y”) • Alternation: x|y (“x” or “y”) Concatenation is implicit. And we want it to be explicit in AST.
Concat operation `0|xy[a-z]` ⬇ 0 | x ⋅ y ⋅
[a-z]
Parsing concatenation • Insert concat tokens • Parse regexp like
it has explicit concat xy? ⬇ “x” “⋅” “y” “?”
Char classes (are hard) • Different escaping rules • Char-ranges
can be tricky This is char range: [\n-\r] 4 chars This is not: [\d-\r] \d, “-” and “\r”
Char classes syntax `[][]` What is it?
Char classes syntax `[][]` A char class of “]” and
“[“! `[\]\[]`
Char classes syntax `[^]*|\[[^\]]` What is it?
Char classes syntax `[^]*|\[[^\]]` A single char class! `[^\]*|\[\[^\]]`
Char classes syntax `[+=-_]` What will be matched?
Char classes syntax `[+=-_]` “F” matched
Char classes syntax `[+=\-_]` “F” not matched
Chars and literals • Consecutive “chars” can be merged •
Single char should not be converted Both forms (with and without merge) are useful. Merged chars simplify literal substring analysis.
Concat operation `foox?y` ⬇ lit(foo) ⋅ ?(char(x)) ⋅ char(y)
AST types There are at least two approaches: • One
type + enum tags • Many types + shared interface/base Both have pros and cons.
AST types type Expr struct { Kind ExprKind // enum
tag Value string // source text Args []Expr // sub-expr list } type ExprKind int
AST types const ( ExprNone ExprKind = iota ExprChar ExprLiteral
// list of chars ExprConcat // xy ExprAlt // x|y // etc. )
Helper for the next slide func charExpr(val string) Expr {
return Expr{ Kind: ExprChar, Value: val, } }
AST of `x|yz` Expr{ Kind: ExprAlt, Value: "x|yz", Args: []Expr{
charExpr("x"), { Kind: ExprConcat, Value: "yz", Args: []Expr{ charExpr("y"), charExpr("z"), }, }, }, }
Go regexp parsing library https://github.com/quasilyte/regex contains a `regex/syntax` package that
is used in both NoVerify and go-critic. It can parse both re2 and pcre patterns.
Analyzing regexp flow
Regexp flags A regular expression can have an initial set
of flags, then it can add or remove any of them inside the expression. The effect is localized to the current (potentially capturing) group.
Concat operation `/((?i)a(?m)b(?-m)c)d/s` ^--------- flags: si Entered a group with
“i” flag
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -^ flags: sim Mid-group flags: add “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -------------^ flags: si Mid-group flags: clear “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -----------------^ flags: s Left a group with
“i” flag
Flags flow • Flags are lexically scoped • Groups are
a scoping unit • Leaving a group drops a scope • Entering a group adds a scope
Back references • Rules vary among engines/dialects • Syntax may
clash with octal literals • Can also be relative/named: \g{-1}, etc We’ll use PHP rules as an example.
Back reference QUIZ! (PHP) \0 ??? \1 … \9 ???
\10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
??? \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 It depends!
Groups flow • Capturing groups are numbered from left to
right. • Non-capturing groups are ignored. • Groups can have a name.
Finding bugs in regular expressions
“^” anchor diagnostic Let’s check that “^” is used only
in the beginning position of the pattern. Because if it follows a non-empty match, it’ll never succeed.
Correct “^” usages `^foo` `^a|^b` `a|(b|^c)`
Incorrect “^” usages `foo^` `a^b` `(a|b)^c`
Algorithm • Traverse all starting branches • Mark all reached
“^” as “good” Then traverse a pattern AST normally and report any “^” that was not marked.
The starting branches? • For every “concat” met, it’s the
first element (applied recursively). • If root regexp element is not “concat”, consider it to be a concat of 1 element.
URL matching `google.com`
URL matching `google.com` http://googleocom.ru
URL matching `google.com` http://googleocom.ru http://a.github.io/google.com
URL matching `google\.com` http://googleocom.ru http://a.github.io/google.com
URL matching `^https?://google\.com/` http://googleocom.ru http://a.github.io/google.com
URL matching When “.” is used before common domain name
like “com”, it’s probably a mistake. If we have char sequences represented as a single AST node, this analysis is trivial.
Handling unescaped dot `google.com` lit(google) ⋅ . ⋅ lit(com) Warn
if “.” is followed by a lit with domain name value.
Regexp rewriting
Regexp input generation It’s quite simple to generate a string
that will be matched by a regular expression if you have that regexp AST.
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa N matches of \w
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 1 match of [0-9]
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 May do nothing for $
Regexp input generation Generating a non-matching strings can be useful
for catastrophic backtracking evaluation.
Regexp simplification Instead of writing a matching characters we can
write the pattern syntax itself. By replacing recognized AST node sequences with something simpler, we can perform a regexp simplification.
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x)
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \d Can’t
simplify \d, write as is
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \dx+ xx*
-> x+
Oh, the possibilities! x{1,} -> x+ [a-z\d][a-z\d] -> [a-z\d]{2} [^\d]
-> \D a|b|c -> [abc]
https://quasilyte.dev/regexp-lint/ Online Demo
Submit your ideas! :) If you have a particular regexp
simplification or bug pattern that is not detected by regexp-lint, let me know.
Thank you.