Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元尺度法MDS
Search
Ringa_hyj
January 07, 2021
Science
0
320
多次元尺度法MDS
Ringa_hyj
January 07, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
210
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
88
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
170
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
160
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
860
因子分析(仮)
ringa_hyj
0
170
階層、非階層クラスタリング
ringa_hyj
0
140
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
510
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
460
Other Decks in Science
See All in Science
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
190
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
170
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
250
力学系から見た現代的な機械学習
hanbao
3
3.8k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
320
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
700
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
140
MCMCのR-hatは分散分析である
moricup
0
550
My Little Monster
juzishuu
0
410
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.5k
Featured
See All Featured
First, design no harm
axbom
PRO
1
1.1k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
870
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
35
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
390
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
100
A better future with KSS
kneath
240
18k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Making Projects Easy
brettharned
120
6.5k
GraphQLとの向き合い方2022年版
quramy
50
14k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
Transcript
多次元尺度法 MDS : multi dimensional scaling 特性値ではなく、 個体間の類似性を表現するようなデータに対して行う分析 多次元の類似性を持つデータを低次元に落とすなどがMDS 類似性といっても、必ず距離データでなくともいい場合(非計量多次元尺度
non metric MDS) 距離データである場合 metric MDS (計量多次元尺度、古典的多次元尺度)
mtric MDS データ点ごとの差の二乗の平方根を考える = − = 1 − 1 2
+ ・・・ 変換後のベクトルから、以下のような式が成り立つyの存在する空間を探す − = = = − ここで、距離の公理を満たすことを前提とする δ=0 δ>=0 δij=δji ※公理を満たすデータは「メトリックである」と呼ばれる D=[δij]
単に二乗を考えてみる ⅈ 2 = − 2 = − − =
2 + 2 − 2 ⊤ 後項の内積部分を考えると、iとjの積の総和となる = 1 1 + 22 + ⋯ = 2 + 2 − 2 よって 変形して = ½ ( 2 + 2 − ⅈ 2 ) これは個体間の距離を求めるということは、内積を求めることに等しいということを表現している 内積から別座標yへの変換を考えるのが古典的手法であると先ほど説明した。
あ
個体ijの原点は、n個の重心であるとする 新しい座標ベクトル y は ⅈ 2 = − 2 =
− − よって d^2 ij = -2aij = yi T yi + yj T yj – 2yi T yj =bii + bjj -2bij =aii + ajj – 2aij (距離の公理より) =-2aij
bij = aij – mean(ai+) - mean(a+j) + mean(a++) bij
= (yi – y_bar)T(yj-y_bar) B = [bij] このとき、Bは固有値がすべて非負の半正定値行列であることがわかる B=ΓΛΓ ^T = (ΓΛ^1/2)(ΓΛ^1/2) = YY^T ΛはBの固有値を対角として持つ行列である Λ = diag(λ1…λp) Γは固有ベクトルを列変形したもの Γi = λi ^(-1/2) xi
より詳細な計算方法 データDからA=[-1/2 dij^2]を計算 bij = aij – mean(ai+)… から B=[bij]を求める
Bのうち、正の固有値 λ だけを削減次元 k個求める(寄与率を計算する場合にはすべて求める) 固有ベクトル Y = (y1~yk)を求める λi = yi T yi となるように固有ベクトルの「長さ」を調整する 個体 pi の座標が yi1 ….yip へと変換される
2 4 5 2 3 6 4 3 7 5
6 7 行平均 mean(ai+) 列平均 mean(a+i)
2次元に落とすならば固有値λから2つの固有値を選び出す。同時に固有ベクトルも2つ得られるはず。 固有ベクトルは長さ1に正規化されて出力されるものなので、 固有値の大きさに調整する yk T yk = λk より、 yi
= y’i √λi を計算する 二次元のデータをplotにつかう。 つまり、 調整した一つ目の固有ベクトルをx座標 調整した二つ目の固有ベクトルをy座標 とする
あ
心理学のような、非類似度データに対する分析 stress(目的関数) を最小にするような個体の配置を求める = ⅆ − መ 2 ⅈ 2
1 2 ※Σはj<iの時のみ実行される ※j<I ということは、下側三角行列のすべての和になる ※d_hat は dijと近くなるような座標値から定められる値 ※分子は最小二乗法に等しい Sが0になればよい推定量で、大きい(0.2)以上だと失敗とされている
あ