Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元尺度法MDS
Search
Ringa_hyj
January 07, 2021
Science
0
230
多次元尺度法MDS
Ringa_hyj
January 07, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
780
因子分析(仮)
ringa_hyj
0
110
階層、非階層クラスタリング
ringa_hyj
0
84
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
380
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
360
正準相関分析(仮)
ringa_hyj
0
91
対応分析
ringa_hyj
0
110
2020-11-15-第1回-統計学勉強会
ringa_hyj
0
680
生成モデルの今までと異常検知への応用(GAN,anoGAN,ganomaly,efficient,skip))
ringa_hyj
2
2.3k
Other Decks in Science
See All in Science
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
480
Coqで選択公理を形式化してみた
soukouki
0
180
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
460
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
1
430
Celebrate UTIG: Staff and Student Awards 2024
utig
0
420
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2k
最適化超入門
tkm2261
13
3.2k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
210
機械学習を支える連続最適化
nearme_tech
PRO
1
120
LIMEを用いた判断根拠の可視化
kentaitakura
0
310
HAS Dark Site Orientation
astronomyhouston
0
5.3k
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.3k
Featured
See All Featured
Designing Experiences People Love
moore
138
23k
StorybookのUI Testing Handbookを読んだ
zakiyama
26
5.2k
Speed Design
sergeychernyshev
24
560
Optimizing for Happiness
mojombo
376
69k
The Language of Interfaces
destraynor
154
24k
Six Lessons from altMBA
skipperchong
26
3.4k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
[RailsConf 2023] Rails as a piece of cake
palkan
51
4.8k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
Typedesign – Prime Four
hannesfritz
39
2.4k
How to Think Like a Performance Engineer
csswizardry
19
1.1k
Transcript
多次元尺度法 MDS : multi dimensional scaling 特性値ではなく、 個体間の類似性を表現するようなデータに対して行う分析 多次元の類似性を持つデータを低次元に落とすなどがMDS 類似性といっても、必ず距離データでなくともいい場合(非計量多次元尺度
non metric MDS) 距離データである場合 metric MDS (計量多次元尺度、古典的多次元尺度)
mtric MDS データ点ごとの差の二乗の平方根を考える = − = 1 − 1 2
+ ・・・ 変換後のベクトルから、以下のような式が成り立つyの存在する空間を探す − = = = − ここで、距離の公理を満たすことを前提とする δ=0 δ>=0 δij=δji ※公理を満たすデータは「メトリックである」と呼ばれる D=[δij]
単に二乗を考えてみる ⅈ 2 = − 2 = − − =
2 + 2 − 2 ⊤ 後項の内積部分を考えると、iとjの積の総和となる = 1 1 + 22 + ⋯ = 2 + 2 − 2 よって 変形して = ½ ( 2 + 2 − ⅈ 2 ) これは個体間の距離を求めるということは、内積を求めることに等しいということを表現している 内積から別座標yへの変換を考えるのが古典的手法であると先ほど説明した。
あ
個体ijの原点は、n個の重心であるとする 新しい座標ベクトル y は ⅈ 2 = − 2 =
− − よって d^2 ij = -2aij = yi T yi + yj T yj – 2yi T yj =bii + bjj -2bij =aii + ajj – 2aij (距離の公理より) =-2aij
bij = aij – mean(ai+) - mean(a+j) + mean(a++) bij
= (yi – y_bar)T(yj-y_bar) B = [bij] このとき、Bは固有値がすべて非負の半正定値行列であることがわかる B=ΓΛΓ ^T = (ΓΛ^1/2)(ΓΛ^1/2) = YY^T ΛはBの固有値を対角として持つ行列である Λ = diag(λ1…λp) Γは固有ベクトルを列変形したもの Γi = λi ^(-1/2) xi
より詳細な計算方法 データDからA=[-1/2 dij^2]を計算 bij = aij – mean(ai+)… から B=[bij]を求める
Bのうち、正の固有値 λ だけを削減次元 k個求める(寄与率を計算する場合にはすべて求める) 固有ベクトル Y = (y1~yk)を求める λi = yi T yi となるように固有ベクトルの「長さ」を調整する 個体 pi の座標が yi1 ….yip へと変換される
2 4 5 2 3 6 4 3 7 5
6 7 行平均 mean(ai+) 列平均 mean(a+i)
2次元に落とすならば固有値λから2つの固有値を選び出す。同時に固有ベクトルも2つ得られるはず。 固有ベクトルは長さ1に正規化されて出力されるものなので、 固有値の大きさに調整する yk T yk = λk より、 yi
= y’i √λi を計算する 二次元のデータをplotにつかう。 つまり、 調整した一つ目の固有ベクトルをx座標 調整した二つ目の固有ベクトルをy座標 とする
あ
心理学のような、非類似度データに対する分析 stress(目的関数) を最小にするような個体の配置を求める = ⅆ − መ 2 ⅈ 2
1 2 ※Σはj<iの時のみ実行される ※j<I ということは、下側三角行列のすべての和になる ※d_hat は dijと近くなるような座標値から定められる値 ※分子は最小二乗法に等しい Sが0になればよい推定量で、大きい(0.2)以上だと失敗とされている
あ