Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元尺度法MDS
Search
Ringa_hyj
January 07, 2021
Science
0
290
多次元尺度法MDS
Ringa_hyj
January 07, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
84
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
51
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
60
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
59
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
840
因子分析(仮)
ringa_hyj
0
150
階層、非階層クラスタリング
ringa_hyj
0
120
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
430
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
420
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
920
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
510
SciPyDataJapan 2025
schwalbe10
0
240
データベース08: 実体関連モデルとは?
trycycle
PRO
0
700
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
540
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
Symfony Console Facelift
chalasr
2
460
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.2k
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
410
Ignite の1年間の軌跡
ktombow
0
130
IWASAKI Hideo
genomethica
0
110
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
130
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Designing for humans not robots
tammielis
253
25k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Speed Design
sergeychernyshev
32
1k
How to train your dragon (web standard)
notwaldorf
94
6.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
260
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Transcript
多次元尺度法 MDS : multi dimensional scaling 特性値ではなく、 個体間の類似性を表現するようなデータに対して行う分析 多次元の類似性を持つデータを低次元に落とすなどがMDS 類似性といっても、必ず距離データでなくともいい場合(非計量多次元尺度
non metric MDS) 距離データである場合 metric MDS (計量多次元尺度、古典的多次元尺度)
mtric MDS データ点ごとの差の二乗の平方根を考える = − = 1 − 1 2
+ ・・・ 変換後のベクトルから、以下のような式が成り立つyの存在する空間を探す − = = = − ここで、距離の公理を満たすことを前提とする δ=0 δ>=0 δij=δji ※公理を満たすデータは「メトリックである」と呼ばれる D=[δij]
単に二乗を考えてみる ⅈ 2 = − 2 = − − =
2 + 2 − 2 ⊤ 後項の内積部分を考えると、iとjの積の総和となる = 1 1 + 22 + ⋯ = 2 + 2 − 2 よって 変形して = ½ ( 2 + 2 − ⅈ 2 ) これは個体間の距離を求めるということは、内積を求めることに等しいということを表現している 内積から別座標yへの変換を考えるのが古典的手法であると先ほど説明した。
あ
個体ijの原点は、n個の重心であるとする 新しい座標ベクトル y は ⅈ 2 = − 2 =
− − よって d^2 ij = -2aij = yi T yi + yj T yj – 2yi T yj =bii + bjj -2bij =aii + ajj – 2aij (距離の公理より) =-2aij
bij = aij – mean(ai+) - mean(a+j) + mean(a++) bij
= (yi – y_bar)T(yj-y_bar) B = [bij] このとき、Bは固有値がすべて非負の半正定値行列であることがわかる B=ΓΛΓ ^T = (ΓΛ^1/2)(ΓΛ^1/2) = YY^T ΛはBの固有値を対角として持つ行列である Λ = diag(λ1…λp) Γは固有ベクトルを列変形したもの Γi = λi ^(-1/2) xi
より詳細な計算方法 データDからA=[-1/2 dij^2]を計算 bij = aij – mean(ai+)… から B=[bij]を求める
Bのうち、正の固有値 λ だけを削減次元 k個求める(寄与率を計算する場合にはすべて求める) 固有ベクトル Y = (y1~yk)を求める λi = yi T yi となるように固有ベクトルの「長さ」を調整する 個体 pi の座標が yi1 ….yip へと変換される
2 4 5 2 3 6 4 3 7 5
6 7 行平均 mean(ai+) 列平均 mean(a+i)
2次元に落とすならば固有値λから2つの固有値を選び出す。同時に固有ベクトルも2つ得られるはず。 固有ベクトルは長さ1に正規化されて出力されるものなので、 固有値の大きさに調整する yk T yk = λk より、 yi
= y’i √λi を計算する 二次元のデータをplotにつかう。 つまり、 調整した一つ目の固有ベクトルをx座標 調整した二つ目の固有ベクトルをy座標 とする
あ
心理学のような、非類似度データに対する分析 stress(目的関数) を最小にするような個体の配置を求める = ⅆ − መ 2 ⅈ 2
1 2 ※Σはj<iの時のみ実行される ※j<I ということは、下側三角行列のすべての和になる ※d_hat は dijと近くなるような座標値から定められる値 ※分子は最小二乗法に等しい Sが0になればよい推定量で、大きい(0.2)以上だと失敗とされている
あ