Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多次元尺度法MDS
Search
Ringa_hyj
January 07, 2021
Science
0
230
多次元尺度法MDS
Ringa_hyj
January 07, 2021
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
770
因子分析(仮)
ringa_hyj
0
110
階層、非階層クラスタリング
ringa_hyj
0
83
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
380
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
350
正準相関分析(仮)
ringa_hyj
0
91
対応分析
ringa_hyj
0
110
2020-11-15-第1回-統計学勉強会
ringa_hyj
0
680
生成モデルの今までと異常検知への応用(GAN,anoGAN,ganomaly,efficient,skip))
ringa_hyj
2
2.3k
Other Decks in Science
See All in Science
Machine Learning for Materials (Lecture 8)
aronwalsh
0
400
Spectral Sparsification of Hypergraphs
tasusu
0
120
20240420 Global Azure 2024 | Azure Migrate でデータセンターのサーバーを評価&移行してみる
olivia_0707
2
870
20240127_OpenRadiossエアバッグ解析
kamakiri1225
0
250
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
190
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
470
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
520
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
200
HAS Dark Site Orientation
astronomyhouston
0
5.2k
ICRA2024 速報
rpc
3
5k
最適化超入門
tkm2261
13
3.2k
Coqで選択公理を形式化してみた
soukouki
0
170
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.5k
A designer walks into a library…
pauljervisheath
202
24k
Unsuck your backbone
ammeep
668
57k
A better future with KSS
kneath
237
17k
A Modern Web Designer's Workflow
chriscoyier
692
190k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.8k
Building Applications with DynamoDB
mza
90
6k
StorybookのUI Testing Handbookを読んだ
zakiyama
26
5.1k
What's in a price? How to price your products and services
michaelherold
243
11k
Designing the Hi-DPI Web
ddemaree
280
34k
Clear Off the Table
cherdarchuk
91
320k
Optimising Largest Contentful Paint
csswizardry
31
2.8k
Transcript
多次元尺度法 MDS : multi dimensional scaling 特性値ではなく、 個体間の類似性を表現するようなデータに対して行う分析 多次元の類似性を持つデータを低次元に落とすなどがMDS 類似性といっても、必ず距離データでなくともいい場合(非計量多次元尺度
non metric MDS) 距離データである場合 metric MDS (計量多次元尺度、古典的多次元尺度)
mtric MDS データ点ごとの差の二乗の平方根を考える = − = 1 − 1 2
+ ・・・ 変換後のベクトルから、以下のような式が成り立つyの存在する空間を探す − = = = − ここで、距離の公理を満たすことを前提とする δ=0 δ>=0 δij=δji ※公理を満たすデータは「メトリックである」と呼ばれる D=[δij]
単に二乗を考えてみる ⅈ 2 = − 2 = − − =
2 + 2 − 2 ⊤ 後項の内積部分を考えると、iとjの積の総和となる = 1 1 + 22 + ⋯ = 2 + 2 − 2 よって 変形して = ½ ( 2 + 2 − ⅈ 2 ) これは個体間の距離を求めるということは、内積を求めることに等しいということを表現している 内積から別座標yへの変換を考えるのが古典的手法であると先ほど説明した。
あ
個体ijの原点は、n個の重心であるとする 新しい座標ベクトル y は ⅈ 2 = − 2 =
− − よって d^2 ij = -2aij = yi T yi + yj T yj – 2yi T yj =bii + bjj -2bij =aii + ajj – 2aij (距離の公理より) =-2aij
bij = aij – mean(ai+) - mean(a+j) + mean(a++) bij
= (yi – y_bar)T(yj-y_bar) B = [bij] このとき、Bは固有値がすべて非負の半正定値行列であることがわかる B=ΓΛΓ ^T = (ΓΛ^1/2)(ΓΛ^1/2) = YY^T ΛはBの固有値を対角として持つ行列である Λ = diag(λ1…λp) Γは固有ベクトルを列変形したもの Γi = λi ^(-1/2) xi
より詳細な計算方法 データDからA=[-1/2 dij^2]を計算 bij = aij – mean(ai+)… から B=[bij]を求める
Bのうち、正の固有値 λ だけを削減次元 k個求める(寄与率を計算する場合にはすべて求める) 固有ベクトル Y = (y1~yk)を求める λi = yi T yi となるように固有ベクトルの「長さ」を調整する 個体 pi の座標が yi1 ….yip へと変換される
2 4 5 2 3 6 4 3 7 5
6 7 行平均 mean(ai+) 列平均 mean(a+i)
2次元に落とすならば固有値λから2つの固有値を選び出す。同時に固有ベクトルも2つ得られるはず。 固有ベクトルは長さ1に正規化されて出力されるものなので、 固有値の大きさに調整する yk T yk = λk より、 yi
= y’i √λi を計算する 二次元のデータをplotにつかう。 つまり、 調整した一つ目の固有ベクトルをx座標 調整した二つ目の固有ベクトルをy座標 とする
あ
心理学のような、非類似度データに対する分析 stress(目的関数) を最小にするような個体の配置を求める = ⅆ − መ 2 ⅈ 2
1 2 ※Σはj<iの時のみ実行される ※j<I ということは、下側三角行列のすべての和になる ※d_hat は dijと近くなるような座標値から定められる値 ※分子は最小二乗法に等しい Sが0になればよい推定量で、大きい(0.2)以上だと失敗とされている
あ