Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DVCによるデータバージョン管理
Search
Ringa_hyj
December 31, 2024
Technology
0
25
DVCによるデータバージョン管理
Ringa_hyj
December 31, 2024
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
22
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
31
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
22
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
810
多次元尺度法MDS
ringa_hyj
0
260
因子分析(仮)
ringa_hyj
0
130
階層、非階層クラスタリング
ringa_hyj
0
98
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
400
深層学習をつかった画像スタイル変換の話と今までの歴史
ringa_hyj
0
390
Other Decks in Technology
See All in Technology
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
The Future of SEO: The Impact of AI on Search
badams
0
190
RECRUIT TECH CONFERENCE 2025 プレイベント【高橋】
recruitengineers
PRO
0
160
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
2
1.5k
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
17
6.7k
Helm , Kustomize に代わる !? 次世代 k8s パッケージマネージャー Glasskube 入門 / glasskube-entry
parupappa2929
0
250
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
700
30分でわかる『アジャイルデータモデリング』
hanon52_
9
2.7k
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
2k
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
130
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.6k
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
4 Signs Your Business is Dying
shpigford
182
22k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
Into the Great Unknown - MozCon
thekraken
35
1.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
A Tale of Four Properties
chriscoyier
158
23k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Agile that works and the tools we love
rasmusluckow
328
21k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
DVCの目的は・・・ 機械学習プロジェクトの再現可能性(reproducible)の確保 こんな経験はありませんか? • 過去に自分 or 他人が取り組んだ機械学習プロジェクトを再実行することになった • 実行したがナゼか当時の報告書の結果と一致しない ※原因はデータ・コード・パラメタに変更が発生したが、変更が残っていない等
紹介 1/5 はじめに
紹介 2/5 現状 • コードはgitで管理できるが、大規模なデータセットはgitでは管理が難しい(容量の制限) ➢ コードはgitで管理、データセットはローカルorクラウドストレージに保存 • データとコードの対応をバージョン管理する難しさ(ドキュメント作成の難しさ) ➢
どのコードでどのデータを使用したか、記録はドキュメント作成者の努力に依存する • チーム間でのデータ共有の難しさ(統一された保存先がない) ➢ データの保存場所だけでなく、実行フォルダへの配置方法などをドキュメントや口頭 で詳細に説明する • コード・パラメタ・データを変更した場合の性能比較が困難(結果ファイルの管理が大変) ➢ 変更の履歴、結果の比較をドキュメントとして保存 ➢ 結果ファイルをストレージへ保存 ➢ 手順に従ったとき、結果が一致するか目視でチェック 上記のようにコードとデータとそのバージョン管理にミスが発生す る状況ではプロジェクトの再現性が低下してしまいます 現状の解決策
DVCはGitと連携して動作する(特にデータ管理の)補完的なツールと してプロジェクトの実験再現性を確保するように設計されています 解決策 • 大きなデータファイルはGitの外で管理 • データやコード、モデルの重みなどに発生した差異をmd5ハッシュを使い検知 • dvc.yamlや.dvcなどのメタファイルのみをGitで追跡 •
Gitライクなコマンドでデータのバージョンを管理(add, checkout, pushなど) • 実データはキャッシュやストレージ(AWS S3, Google Cloud Storage, Azure Blob)に保 存 • データ処理から学習、評価までのパイプラインを定義可能 • コード・パラメタ・データの組み合わせごとの評価指標をコミット履歴やブランチをつか い比較することが可能 紹介 3/5 DVCによる解決策
git hub DVC remote storage git ローカルリポジトリ DVC cache ソースコード
DVCメタファイル ソースコード DVCメタファイル 実データ (データセット、モデル) 実データ (md5ハッシュによる重複削除) リモート環境 ローカル環境 git push git pull dvc push dvc pull dvc add dvc commit dvc checkout 紹介 4/5 DVCのデータ管理イメージ
前処理 pre.py 特徴量作成 feat.py 学習 train.py 評価 eval.py 実行パイプライン dvc.yaml
パラメタ params.yaml pre.py feat.py train.py eval.py 中間生成物 (特徴量、モデル) 実験結果 (metrics.json、plot.png) 紹介 5/5 • 依存ファイルの変化をmd5ハッシュで検知 • dvc reproコマンドでパイプラインに定義したスクリプトを順番に実行 • 結果の生成、比較を半自動化 パイプラインによる実行過程の再現